
Performance measurement of Eulerian kinetic code on the Xeon
Phi KNL

Takayuki Umeda
Institute for Space-Earth Environmental Research,

Nagoya University
Nagoya, Aichi

umeda@isee.nagoya-u.ac.jp

Keiichiro Fukazawa
Academic Center for Computing and Media Studies,

Kyoto University
Kyoto, Kyoto

fukazawa@media.kyoto-u.ac.jp

ABSTRACT

The present study deals with the Eulerian kinetic simula-
tion code as a high-performance application, which solves
the first-principle kinetic equations known as the Boltzmann
equation. A five-dimensional Boltzmann code with two spa-
tial dimension and three velocity dimensions is parallelized
with the MPI-OpenMP hybrid parallelism. The performance
of the parallel Boltzmann code is measured on a single com-
pute node with a Xeon Phi Knights Landing (KNL) proces-
sor. In the present performance measurement with different
configurations of memory and cluster modes, the number of
processes per node is varied. The result shows that the MPI-
OpenMP hybrid parallelism outperforms the flat-MPI for
any number of processes per node and that 4 or 16 processes
are an optimum number of processes per node. It is also
shown that the use of Multi-Channel Dynamic Random Ac-
cess Memory (MCDRAM) as the “cache” mode gives higher
performances than the “flat” mode.

CCS CONCEPTS

�Computing methodologies�Massively parallel and
high-performance simulations; Parallel algorithms; �Ap-
plied computing� Physics; Astronomy; Earth and atmo-
spheric sciences;

KEYWORDS

Xeon Phi; High performance computing; kinetic simulation;
Eulerian-grid-based method; hybrid parallelism; performance
measurement

ACM Reference Format:

Takayuki Umeda and Keiichiro Fukazawa. 2018. Performance mea-
surement of Eulerian kinetic code on the Xeon Phi KNL. In Pro-

ceedings of International Conference on High Performance Com-
puting in Asia-Pacific Region (HPC Asia 2018).ACM, New York,

NY, USA, 4 pages.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

HPC Asia 2018, January 2018, Tokyo, Japan

© 2018 Copyright held by the owner/author(s).

1 INTRODUCTION

Manycore scalar processors are one of recent trends of CPUs
in high-performance computing, which run at low clock fre-
quency to reduce the power consumption but have a large
number of compute cores with processing units for operating
multiple data, such as Advanced Vector Extension (AVX)
and Single Instruction Multi Data (SIMD) units. It is not
easy for users of scientific applications to achieve a high per-
formance (e.g., a computational efficiency of more than 30%
to the theoretical peak performance) on recent manycore
scalar processors with multiple data units.

As a high-performance application to scientific comput-
ing, the present study deals with a first-principle kinetic
simulation based on the Eulerian grid. The first-principle
kinetic simulation usually requires enormous computing re-
sources since this solves time development of distribution
functions defined in “hyper” dimensions (at most six di-
mensions: three spatial and three velocity dimensions). In
Eulerian-grid-based simulations, such as fluid simulations
and the present kinetic simulations, a bottleneck of the com-
putational performance generally exists at the memory band-
width.

Performance tuning of the Eulerian-grid-based codes on
manycore scalar processors is an issue in high-performance
computing. In the present study, performance measurement
of the Eulerian-grid-based kinetic code is made on the recent
processor Xeon Phi Knight Landing (KNL) with various con-
figurations of memory and cluster modes.

2 OVERVIEW OF NUMERICAL
SCHEMES

The present kinetic code solves the first-principle equation,
which is known as the collisionless Boltzmann equation,

∂fs
∂t

+ v · ∂fs
∂x

+

[
qs
ms

(E+ v ×B) + g

]
· ∂fs
∂v

= 0, (1)

where f represents the distribution function at a given posi-
tion x, velocity v, and time t, and E, B, g, q, and m repre-
sent electric field, magnetic field, gravity, charge, and mass,
respectively. The subscript s represents the species of singly
charged particles (e.g., s = i and e for ions and electrons, re-
spectively). Here, the collisional term in the right hand side
of the equation is set to be zero. The self-consistent electro-
magnetic and gravitational fields are obtained by coupling
field equations such as the Maxwell equations and the grav-
itational field formula. This equation is also known as the



HPC Asia 2018, January 2018, Tokyo, Japan Takayuki Umeda and Keiichiro Fukazawa

Vlasov equation. By taking moments of the Boltzmann equa-
tion (i.e., integrating over the velocity v), fluid equations are
obtained.

It is not easy to integrate the “hyper-”dimensional equa-
tion numerically in time in terms of both computational ac-
curacy and computational resources. In order to simplify the
numerical operation, the Boltzmann equation (1) is sepa-
rated into two advection equations (2,3) and a rotation equa-
tion (4) based on an operator splitting method [1, 2].

∂fs
∂t

+ v · ∂fs
∂x

= 0, (2)

∂fs
∂t

+

[
qs
ms

E+ g

]
· ∂fs
∂v

= 0, (3)

∂fs
∂t

+
qs
ms

(v ×B) · ∂fs
∂v

= 0. (4)

Equations (2) and (3) are scalar (linear) advection equa-
tions in which v and qsE/ms+g are independent of x and v,
respectively. For solving these multi-dimensional advection
equations, we adopt a multidimensional conservative semi-
Lagrangian scheme [2] together with a fifth-order positive
and non-oscillatory limiter [3, 4].

Equation (4) is a multi-dimensional rotation equation which
follows a circular motion of a profile at constant speed by a
centripetal force. For stable (solid body) rotation of the pro-
file on the Cartesian grid system, the “back-substitution”
scheme [5] together with the positive and non-oscillatory
scheme [3, 4] are adopted.

The distribution function is defined by a five-dimensional
array fs(vx, vy, vz, x, y). The velocity dimensions are placed
at inner loops because the density and the momentum are
computed by the integration (sum) of the distribution func-
tion over the velocity directions. For solving the advection
equation (2), however, the array of the distribution function
is transposed to f ′

s(x, y, vx, vy, vz) for accelerating the com-
putation.

A hyper-dimensional simulation requires a huge computer
resource. For an example, a computation with 406 grid cells
requires ∼160 GB memory, so a limited number of systems
with large shared memory can handle it. In the present five-
dimensional Boltzmann code, a computation with 405 grid
cells requires ∼4 GB memory, which can be handled on var-
ious supercomputer systems with a small shared memory.
For applications to practical scientific computing, however,
massively parallel computation with multiple compute nodes
is necessary, since more than 1 TB memory is usually used
for practical scientific computing. Hyper-dimensional Boltz-
mann simulations are practically in use (but not so widely)
in plasma sciences, especially for laser plasma [1], tokamak
plasma in thermonuclear fusion devices [6], and collisionless
space plasma [7, 8].

We adopt the “domain decomposition” with the standard
message passing interface (MPI) library as the first-level pro-
cess parallelism as standard Eulerian-grid-based methods do.
However, we decompose the computational domain only in
the position dimensions [9]. The velocity dimensions are not

Table 1: Configurations of the Xeon Phi processor
for the present performance measurement.

Configuration Memory mode Cluster mode

#1 Flat All2All
#2 Cache All2All
#3 Cache Hemisphere
#4 Cache Quadrant

decomposed because there arise some additional communi-
cations overhead due to a reduction operation in the compu-
tation of the density and momentum. It is well-known that
the domain decomposition involves the exchange of halo lay-
ers for the distribution function and electromagnetic field
data at boundaries of each computational sub-domain. The
present non-oscillatory and conservative scheme [3, 4] uses
six grid cells for numerical interpolation. Thus, three halo
grids are exchanged by using the “MPI_Sendrecv” subroutine
in MPI for simplicity, portability and stability. As a second-
level thread parallelism, we use the “OMP (PARALLEL) DO”
directive together with the “COLLAPSE” clause to parallelize
most outer multiple loops with less threading overhead [10].

3 PERFORMANCE MEASUREMENT

3.1 System descriptions

Our system has 9 6GB of DDR4 shared memory and a sin-
gle Xeon Phi 7250 (Knights Landing) processor on one com-
pute node. The processor has 16 GB of Multi-Channel Dy-
namic Random Access Memory (MCDRAM) and 68 com-
pute cores. A total of 272 processes are executable with the
hyper threading (HT) technology. The Intel Parallel Stu-
dio XE Cluster Edition Ver.17.0.1.132 is installed. The com-
piler option used in the present performance measurement
is “-ipo -ip -O3 -xMIC-AVX512.”

The MCDRAM has a high bandwidth of over 400 GB/s
which is about five times larger than the bandwidth of DDR4
main memory (∼90 GB/s). However, the latency MCDRAM
is slightly higher than that of the DDR4 main memory at low
loads (but is much less at high loads). In the present study,
we change the configuration of the Xeon Phi processor as
shown in Table 1. The memory mode is chosen to be the
“Flat” or “Cache” mode with the “All to All” cluster mode.
Here, the Flat mode uses both of the MCDRAM and DDR4
main memory as shared memory, and the Cache mode uses
the MCDRAM as a kind of (level three) cache of the main
memory. The cluster mode is chosen to be the “All to All,”
“Hemisphere,” or “Quadrant” mode with the “Cache” mem-
ory mode. The All to All cluster mode distributes memory
addresses uniformly on the chip. The Hemisphere and Quad-
rant modes separate compute-core tiles into two and four
groups, respectively, and memory addresses are distributed
only to each tile groups.



Performance measurement of Eulerian kinetic code on the Xeon Phi KNL HPC Asia 2018, January 2018, Tokyo, Japan

Figure 1: Performance measurement result of the
five-dimensional Eulerian kinetic code on the KNL
Xeon Phi processor with 64 compute cores. The ver-
tical axis shows the elapsed time for five time steps.
The horizontal axis shows the number of processes
Np (or the number of threads given by Nt = 64/Np).
The circles, squares, triangles, and x-marks corre-
spond to the results with configurations #1, #2, #3,
and #4 in Table 1, respectively.

3.2 Results

For overall performance measurement, the total number of
grid cells was fixed to Nx×Ny×Nvx×Nvy×Nvz = 128×64×
40×40×40 for two particle species (s = i and e for positively-
charged ions and electrons, respectively), which corresponds
to a job size of ∼28 GB including temporary work arrays.
Hence, the size of the job is larger than the memory size of
the MCDRAM. It should be noted that the length of a loop
(number of iterations) for one dimension is small in hyper-
dimensional simulations due to the limited size of shared
memory. Then, the number of threads sometimes exceed the
length of the loop, which causes a performance loss of the
thread parallelism. Hence, the loop collapsing is necessary in
hyper-dimensional simulations.

We first measured the performance by changing the num-
ber of processes per compute node. The total number of cores
used in this performance measurement is fixed to 64 compute
cores. Figure 1 shows the performance measurement result
for the five-dimensional Eulerian kinetic code. The vertical
axis shows the elapsed time for five time steps. The horizon-
tal axis shows the number of processes Np (or the number
of threads given by Nt = 64/Np). The circles, squares, tri-
angles, and x-marks correspond to the results with configu-
rations #1, #2, #3, and #4 in Table 1, respectively.

Figure 2: Strong scaling of the five-dimensional
Eulerian kinetic code on the KNL Xeon Phi proces-
sor with 16 processes per compute node. The vertical
axis shows the elapsed time for five time steps. The
horizontal axis shows the number of threadsNt. The
circles, squares, triangles, and x-marks correspond
to the results with configurations #1, #2, #3, and
#4 in Table 1, respectively.

It is shown that the elapsed time for the flat-MPI (i.e., 64
processes and 1 thread per compute node) is longest for all of
the configurations. The hybrid parallelism with 16 processes
(4 threads) per compute node is fastest and the hybrid par-
allelism with 4 processes (16 threads) per compute node is
second-fastest for all of the configurations.

It is also clearly shown that the performance of the “Flat”
memory mode is worse. Although the “Quadrant” cluster
mode with 16 processes (4 threads) per compute node is
fastest in Fig.1, the difference of performance among “All to
All,” “Hemisphere,” and “Quadrant” cluster modes is ∼ 1%.

We next conducted strong-scaling tests with different num-
ber of threads by changing the “OMP_NUM_THREADS” environ-
ment variables. Figure 2 shows the strong scaling of the five-
dimensional Eulerian kinetic code with 16 processes per com-
pute node. The vertical axis shows the elapsed time for five
time steps. The horizontal axis shows the number of threads
Nt. The circles, squares, triangles, and x-marks correspond
to the results with configurations #1, #2, #3, and #4 in
Table 1, respectively.

With the “Flat” memory mode, the performance does not
scale linearly with a larger number of threads. The perfor-
mance becomes worse with number of threads larger than
4, suggesting that HT is not effective with the configuration
#1.

With the “Cache” memory mode, the performance scales
linearly until 4 threads per compute node. The performance
becomes slightly better with a larger number of threads. The



HPC Asia 2018, January 2018, Tokyo, Japan Takayuki Umeda and Keiichiro Fukazawa

Figure 3: Strong scaling of the five-dimensional
Eulerian kinetic code on the KNL Xeon Phi pro-
cessor with 4 processes per compute node with the
same format as Fig.2.

performance is improved by ∼ 15% from 4 threads to 17
threads with HT. Although the “Hemisphere” cluster mode
with 17 threads per compute node is fastest in Fig.2, the
difference of performance among “All to All,” “Hemisphere,”
and “Quadrant” cluster modes is ∼ 1%.

Figure 3 shows the strong scaling of the five-dimensional
Eulerian kinetic code with 4 processes per compute node
with the same format as Fig.2. The result with 4 processes
shows the same tendency as the result with 16 processes.
With the “Flat” memory mode, the performance becomes
worse with number of threads larger than 17, suggesting that
HT is not effective with the configuration #1.

With the “Cache” memory mode, the performance scales
linearly until 17 threads per compute node. The performance
becomes slightly better with a larger number of threads. The
performance is improved by ∼ 13% from 17 threads to 68
threads with HT. Although the “Hemisphere” cluster mode
with 68 threads per compute node is fastest in Fig.3, the
difference of performance among “All to All,” “Hemisphere,”
and “Quadrant” cluster modes is ∼ 1%.

The best performance is obtained with 4 processes and 68
threads per compute nodes on the configuration #3 (Cache
and Hemisphere modes). The performance on the KNL Xeon
Phi is slightly higher than on the Haswell Xeon processor by
∼ 13%.

4 CONCLUSIONS

In the present study, we have made performance measure-
ment of the five-dimensional Eulerian kinetic code on the
KNL Xeon Phi processor. It is shown that the hybrid paral-
lelism with the loop collapsing of OpenMP outperforms the
flat-MPI parallelism, as seen in other scalar processors.

The performance of the MCDRAM with “Cache” mode is
higher than with “Flat” mode if the size of job is larger than
the memory size of the MCDRAM. It is suggested that HT
is not effective with the “Flat” memory mode of MCDRAM.
The effect of the cluster mode to the performance is small,
although the “All to All” mode is slightly slower than the
“Hemisphere” and “Quadrant” modes.

ACKNOWLEDGMENTS

This work was supported by MEXT/JSPS Grant-In-Aid (KAK-
ENHI) Nos.JP26287041 and JP15K13572.

REFERENCES
[1] A. Ghizzo, F. Huot, and P. Bertrand, A non-periodic 2D semi-

Lagrangian Vlasov code for Laser-plasma interaction on parallel
computer, J. Comput. Phys., 186(1):47–69, March 2003.

[2] T. Umeda, K. Togano, and T. Ogino, Two-dimensional full-
electromagnetic Vlasov code with conservative scheme and its
application to magnetic reconnection, Comput. Phys. Commun.,
180(3):365–374, March 2009.

[3] T. Umeda, A conservative and non-oscillatory scheme for Vlasov
code simulations, Earth Planets Space, 60(7):773–779, August
2008.

[4] T. Umeda, Y. Nariyuki, and D. Kariya, A non-oscillatory and
conservative semi-Lagrangian scheme with fourth-degree poly-
nomial interpolation for solving the Vlasov equation, Comput.
Phys. Commun., 183(5):1094–1100, May 2012.

[5] H. Schmitz and R. Grauer, Comparison of time splitting and
backsubstitution methods for integrating Vlasov’s equation with
magnetic fields, Comput. Phys. Commun., 175(2):86–92, March
2006.

[6] Y. Idomura, M. Ida, T. Kano, N. Aiba, and S. Tokuda, Conser-
vative global gyrokinetic toroidal full-f five-dimensional Vlasov
simulation, Comput. Phys. Commun., 179(6):391–403, Septem-
ber 2008.

[7] S. Von Alfthan, D. Pokhotelov, Y. Kempf, S. Hoilijoki, I.
Honkonen, A. Sandroos, and M. Palmroth, Vlasiator: First
global hybrid-Vlasov simulations of Earth’s foreshock and mag-
netosheath, J. Atmos. Sol.-Terr. Phys., 120: 24-35, December
2014.

[8] T. Umeda and K. Fukazawa, A high-resolution global Vlasov sim-
ulation of a small dielectric body with a weak intrinsic magnetic
field on the K computer, Earth Planets Space, 67(1):49, April
2015.

[9] T. Umeda, K. Fukazawa, Y. Nariyuki, and T. Ogino, A scalable
full electromagnetic Vlasov solver for cross-scale coupling in space
plasma, IEEE Trans. Plasma Sci., 40(5):1421–1428, March 2012.

[10] T. Umeda and K. Fukazawa, Hybrid parallelization of hyper-
dimensional Vlasov code with OpenMP loop collapse directive,
Adv. Parallel Comput., 27:265–274, April 2016.


