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Background of our research Research concept

Convolutional Neural Network(CNN) low precision data type and arithmetic
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fig7: Relationship between low accuracy operation and recognition accuracy in AlexNet, VGG 16
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impact and speedup of half-precision computation / data-type application on CNN
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Half-precision arithmetic has different effects depending on each layer (memory bound: memory compression, computerion bound: SIMD instruction)

Conclusion Future work

Future work
* Verification of half precision arithmetic using NVIDIA TESLA V100

* GPU implementation of int8 arithmetic type corresponding to 8-bit
quantization
* Verification of convergence of learning by 8-bit quantization

» Validation of effective use of weights of compressed models such as
Deep Compression[7]

purpose of this research

Validation and evaluation of a method for compressing the amount of data contained in convolution
neural network using low precision data type and low precision arithmetic and speeding up
by SIMD instruction

conclusion

* Application of half-precision arithmetic is sufficiently effective even in the
data type in the layer which is memory bound (speed up of about
1.78x, memory compression ~ 2Xx)

* Speeding up in the SIMD instruction of float16 is effective for the
computation bound layer, but it is about 1.58x at maximum

* The accuracy of recognition does NOT degrade depending on CNN
and the method of inference using int 8 data type

Reference

1] S. Gupta, A. Agrawal, K. Gopalakrishnan, P. Narayanan, Deep Learning with Limited Numerical Precision. ,
ernational Conference on Macﬁine Learning, 2015

2] M. Courbariaux, Y. Bengio, J. David, Training deep neural networks with low precision multiplications.,

Advances in Neural Information Processing Systems 28, 2015

; 3] M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, XNOR-Net: ImageNet Classification Using Binary
Compl.lt.atlon Infe.rence GPU | Memory | top-1 top-5 Convolutional Neural Networks., European Conference on Computer Vision, 2016
Precision Time UseRate | Usage acc acc 4] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, Y. Bengio, BinaryNet: Training Deep Neural Networks with
fp32 66.785ms | 99% 12845MiB | 056828 | 0.79950 Weights and Activations Constrained to +1 or —1., Computer Vision anJPqurn Recognition, 2016
' . ' ' 5] K. Chellapilla,S. Puri, P. Simard, High Performance Convolutional Neural Networks for Document Processing,
Dip16Mfp32 | 60.065ms | 99% 7475MiB | 0.56813 | 0.79962 Tenth International Workshop on Frontiers in Handwriting Recognition, pp.~ 386-408, 2006
Dfp16Mfp16 | 51.005ms | 99% 7475MiB | 0.56821 | 0.79944 6] Y Luo, F Yang, Deep Learning With Noise, http://www.andrew.cmu.edu/user/fanyang1/

deep-learning-with-noise.pdf, 2014
7] S. Han, H. Mao, W. Dadlly, Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
Quantization and Huffman Coding, International Conference on Learning Representation, pp.~ 74-76, 2016

fig10: Acceleration of AlexNet by half precision data type and application of half precision arithmetic and its effect on
recognition accuracy




