
An optimization of search for neighbour-particle in MPS
method for Xeon, Xeon Phi and GPU by using directives

Takaaki Miyajima, Kenichi Kubota and Naoyuki Fujita
Numerical Simulation Research Unit, Aeronautical Technology Directorate, Japan Aerospace Exploration Agency

7-44-1, Jindaiji-Higashi, Chofu, Tokyo, Japan
miyajima.takaaki@jaxa.jp

ABSTRACT
Moving Particle Semi-implicit (MPS)method is a particle-base sim-
ulation used in fields such as computational fluid dynamics. Tar-
get fluids and objects are divided up into particles, and each par-
ticle interacts with its neighbour-particle. This process is called
“search for neighbour-particle" and the most time consuming part
in the MPS method. In this paper, we port and optimize search
for neighbour-particle for NVIDIA GPU, Intel Xeon CPU and Intel
Xeon Phi by adding directives. We present two different optimiza-
tions and evaluated them with a standard particle-base simula-
tion benchmark. particles. As a result, NVIDIA Tesla P100 (NVlink)
GPU achieves 5.2 times speed-up compared with Intel Xeon Gold
6150 CPU when the number of particles is 224,910.

CCS CONCEPTS
• Computing methodologies→Massively parallel algorithms; •
Applied computing → Aerospace;

KEYWORDS
Moving Particle Semi-Implicit, GPU, Xeon Phi, Search for neighbour-
particle

ACM Reference Format:
Takaaki Miyajima, Kenichi Kubota and Naoyuki Fujita. 2018. An optimiza-
tion of search for neighbour-particle in MPS method for Xeon, Xeon Phi
and GPU by using directives. In Proceedings of International Conference on
High Performance Computing in Asia-Pacific Region (HPC Asia). ACM, New
York, NY, USA, Article 4, 4 pages. https://doi.org/

1 INTRODUCTION
TheMPSmethod is developed for simulating fluid phenomena such
as fragmentation of in-compressible fluids [1]. An example of MPS
simulation is shown in Figure 1. The motion of each particle is cal-
culated through interactions with neighbour-particle. The compu-
tational characteristics of MPS resemble those of smoothed parti-
cle hydrodynamics (SPH) or the N-body problem. The search for
neighbour-particles is the main bottleneck since it requires a num-
ber of memory transactions. There are some implementations for
GPU and many core [3] [5] [6]. Accuracy of the calculation de-
pends on the number of particles. For example, 4.0km × 3.5km
tsunami analysis used 260 million particles[2].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s).
HPC Asia, 2018
© 2018 Copyright held by the owner/author(s).

Figure 1: MPS simulation: A collapse of water column.

In this paper, we present a porting and optimization of our in-
house MPS program; “p-flow". p-flow is written in Fortran 95, and
it was parallelized byMPI. Further optimizations such as exploiting
thread-level parallelism were not done. The search for neighbour-
particle is ported and parallelized for GPU, Xeon and Xeon Phi by
using OpenACC andOpenMP.We give two different optimizations
for GPU and one optimization for Xeon/Xeon Phi. We evaluate
them on dual NVIDIA Tesla P100 (NVlink) GPU, dual Intel Xeon
Gold 6150 and single Xeon Phi 7210. When the number of particles
is 224,910, processing time of each system is 6.7[ms], 35.1[ms] and
104.1[ms], respectively.

2 P-FLOW: IN-HOUSE MPS CODE
p-flow is our in-houseMPS program. It adopts explicitMPSmethod
for large scale simulation. It consists of two-stage fractional step
scheme, and each computational step performs the following pro-
cessing steps. Proc 1: Calculate external forces. Proc 2: Move parti-
cles. Proc 3: Calculate pressure. Proc 4: Calculate gradient of pres-
sure. Proc 5: Move particles. Proc 6: Increment the time step, and
repeat Proc 1∼6. Each particle has nine different physical quanti-
ties; position, velocity, pressure, intermediate position, intermedi-
ate velocity, gradient of pressure, particle number density, and par-
ticle number. These quantities are single-precision floating-point
and defined in an Structure of Array (SoA) style data structure.

2.1 Search for neighbour-particle
The search for neighbour-particle is themost time-consuming parts
in p-flow. It is performed several times in each time step. The fol-
lowing equation to calculate density which is performed in Proc
3 is a typical case. n∗i =

∑
j,i ω (|r∗j − r

∗
i |) , where n

∗
i is the inter-

mediate particle number density of particle i , ω is weight function

HPC Asia, 2018 BLIND et al.

Figure 2: Search for neighbour-particle with bucket.

and r∗i is the intermediate position of particle i . Each particle drifts
as the timesteps progress and the neighbour-particle changes mo-
mentarily. Some studies have been done to reduce the time spent
on search for neighbour-particles [3] [5] [7]. The bucket, linked-
list, hash and book-keeping method have been proposed.

p-flow adopts bucket with linked-list method as shown in Fig-
ure 2. It illustrates a two-dimensional for brevity. The simulation
domain is decomposed bymultiple regular hexahedrons. It is called
“buckets" (black boxes). Interactions are considered only in adja-
cent buckets. The neighbor-particle are those within the interac-
tion area (red circle). Actual calculation of search for neighbour-
particle is as follows. First, the distances to each neighbour-particle
are calculated. Then, the weight of each neighbour-particle is cal-
culated from the distance. Finally, all the weighted physical quanti-
ties are accumulated to the centre particle. The above computation
is done on all the particles in the simulation area. The size of bucket
is 3.1 times large than that of particle and the maximum number of
particles in bucket is 33. The number of particles in bucket changes
every time step.

In the case of p-flow, search for neighbour-particle for density
calculation consists of quintuple nested loop as follows. Distance,
weight and physical quantity are calculated in loop-4.

(1) loop-1: Choose a target bucket. (red bucket in Figure 2)
(2) loop-2: Pickup a target particle (particle 12) in the target

bucket.
(3) loop-3: Traverse 3×3×3 adjacent buckets. (3×3 in the Fig-

ure 2)
(4) loop-4: Access particles (particle 1∼16) in adjacent buckets.
Figure 3 illustrates a memory access pattern of the loop. Par-

ticles in the same chosen bucket traverse the same buckets and
access the same particles. In the Figure 2, particle 12 and 13 first ac-
cess the same traversed bucket in the upper left of figure. Then they
access the particles 1 and 2 to calculate distance, weight and phys-
ical quantity. And then they access the upper middle bucket in fig-
ure as a next iteration of loop-1. The nested loop is not easy to vec-
torize or improve cache utilization. There are four large reasons.
First, all the loops contains indirect accesses. Second, loop-4 is in-
definite loop since the number of particles in a traversed bucket is

Figure 3: Memory access pattern of search for neighbour-
particle.

uncertain. Third, vectorization is not easy since each target particle
can traverse different bucket and access different particle. Fourth,
not easy to utilize cache since adjacent particles changes time by
time. On the other hand, each particle can be compute indepen-
dently and there are no particular order to traverse and accumu-
late quantity at loop-3 and 4. Thus, a number of parallelism can be
utilized.

2.2 Preliminary evaluation
We conducted a preliminary evaluation on p-flow in a single node
environment consisting of two Intel Xeon Gold 6150 @ 2.7GHz
CPUs and, 192GB ofDDR4-2400memory. There is 72 logical threads
in total (2 CPUs × 18 cores × 2 hyper-threading). We use Intel For-
tran compiler 17.0.4 and Intel MPI. 72 processes are used and it
achieves highest performance when Hyper-Threading is enabled.
Compile option is “-O3 -fpp -xHOST -fp-model fast=2" and MPI
option is “-bind-to socket -npersocket 36 -n 72". Processing time
is an average for the first 200 time steps and measured using the
MPI_Wtime function. Target simulation is a collapse of water col-
umn as shown in Figure 1. Simulation area is 40[cm]×40[cm]×8[cm]
(70×70×14 buckets). The number of particles is 224,910. In the pre-
liminary evaluation, search for neighbour-particle accounted for
35.8% of the total processing time. MPI data preparation and com-
munication accounted for 27.3%. The rest of functions including
dynamic domain decomposition accounted for 39.3%. Density cal-
culation takes 47.8[ms].

3 OPTIMIZATION
In this section, we gives two optimizations; “Bucket per thread"
and “Bucket per thread block". Target subroutine is search for neighbour-
particle in density calculation. OpenMP andOpenACC are used for
Xeon/Xeon Phi and GPU, respectively.

3.1 Optimization 1: Bucket per thread
In this optimization, each bucket (loop-1) is assigned to each thread
in CPU/GPU as shown in Figure 4. loop-2×4 are processed sequen-
tially by each thread. Although all the memory accesses (bucket

An optimization of search for neighbour-particle in MPS method for Xeon, Xeon Phi and GPU by using directives HPC Asia, 2018

Figure 4: Bucket per thread. Figure 5: Bucket per thread
block.

traversal and particles in the traversed buckets) of first particle
(particle 8 in the Figure 2) become cache miss, memory accesses
of second particle become cache hit if the cache for one thread is
large enough. Thus this optimization requires larger cache com-
pared with Optimization 2. We calculate the maximum memory
size of each physical quantity. The number of traversed buckets in
three-dimensional simulation is 27 (= 3×3×3) and the maximum
number of particles in the 27 buckets is 891 (= 33×27). The maxi-
mum memory size of each physical quantity of neighbour-particle
is 3,564 bytes (= 891×4 bytes). In the case of density calculation,
four physical quantities (x, y, z coordinate and density) are re-
quired. 14,256 bytes (= 4×3,564 bytes) is needed to cache all the
physical quantities in each loop-1 iteration. Additionally, bucket
management data structure are required as well. The L1 data cache
size of Xeon and Xeon Phi node are larger than 14,256 bytes as
shown in Table 1. Hence, all the physical quantities in each loop-1
iteration can be stored in L1 data cache. In the case of Tesla P100,
L1 data cache is shared among 32 CUDA threads in warp. It means
that each CUDA thread can only use 445 bytes as a cache and too
small to cache the physical quantities.

For Xeon and Xeon Phi, “$omp parallel do" directive is added on
the loop-1. “schedule" clause is added for load balancing since the
number of particles in chosen bucket is different. Three scheduling
policy (static, dynamic and guided) are evaluated. For GPU, “$acc
parallel loop gang vector" directive is added on the loop-1.

3.2 Optimization 2: Bucket per thread block
In this optimization, each bucket (loop-1) is assigned to thread
block of GPU as shown in Figure 5. This optimization is applied
only to GPU. We tried to perform similar optimization by adding
“$omp simd" directive on loop-4 for Xeon/Xeon Phi. But, Intel com-
piler doesn’t generate vector instructions. We will try to vector-
ize the loop-4 by using intrinsics in future work. Each particle in
the same bucket (loop-2) is assigned to threads in the same thread
block. loop-3 and 4 are processed sequentially by each thread. This
optimizationmakesmemory access of threads simple. All the threads
in a chosen bucket access the same address since each particle in

the same chosen bucket traverses the same adjacent buckets and
particles in loop-3 and 4. It means that, CUDA threads in the same
warp can share the physical quantities. Tesla P100 has 24 KB L1
cache and it is enough to store all the physical quantities for one
loop-1 iteration. In terms of cache utilization, optimization 2 is
much more efficient than that of optimization 1. If the particles
in traversed bucket is aligned in global memory, eight particles are
stored in cache at once since NVIDIATesla P100 fetches 256bit data
by single memory transaction. On the other hand, memory access
is not coalesced and bandwidth utilization is still low. When the
number of particles in bucket is 32, utilization of CUDA thread
is 100%. But average utilization of CUDA thread is low since the
number of particle in bucket often becomes less than 32.

For GPU, “$acc parallel vector_length(N)" and “$acc loop gang"
directive is added on the loop-1 as well. “$acc loop vector" is added
on loop-2. Additionally, “$acc loop seq" is added on loop-4. vec-
tor_length(N) clause determines the number of threads in thread
block. 16, 32, 64 and 128 are evaluated.

4 EVALUATION
Weuse four different computation nodes for evaluation; Intel Xeon
Gold 6150, Xeon Phi KNL 7210, NVIDIA Tesla P100 (PCIe) and P100
(NVlink). Except for Xeon Phi, computation node has two CPUs
and two GPUs. The details of each node are shown in Table 1. For
Xeon and Xeon Phi, Intel Fortran compiler ver.17.0.4 is used. A
compile option is “-qopenmp -O3 -xCOMMON-AVX512 -fp-model
fast=2". One process is assigned to each CPU in a single node.
Thread affinity for Xeon andXeon Phi is “granularity=fine,compact".
For Xeon Phi, Flat-Quadrant mode and MCDRAM is used by “nu-
mactl –membind=1". For P100 (NVlink) and P100 (PCIe), PGI For-
tran compiler ver.17.7 is used. A compile option is “-acc -ta=nvidia:cc60,
cuda8.0, fastmath". OpenMPI 1.10.5 is used with “-bind-to socket -
npersocket 1 -n 2" option. Processing time is measured in the same
way as the preliminary evaluation. Note that elapse time of data
transfer between CPU and GPU is ignored. The simulation setup
is the same as described in Section 2.

Table 1: Specification of computation nodes.

Computation Performance Clock The # of Mem BW L1 cache
Node [TFLOPS] [GHz] threads [GB/s] [KB]

Xeon Gold 6150 N/A 2.7 36 256 512
KNL 7210 5.3 1.3 256 480 32

P100 (PCIe) 9.3 1.1 3,584 732 24
P100 (NVlink) 10.6 1.3 3,584 732 24

4.1 Xeon and Xeon Phi
Table 2 shows evaluation of optimization 1 and scheduling policies.
“KNL 7210 (Single)" shows that actual measured processing time
on one KNL 7210. Best configuration for both processor is “dy-
namic" (chunk size 1). In the case of Xeon Gold 6150, “dynamic" is
14.8% faster than “guided". In the case of KNL 7210, “dynamic" is
36.1% faster than “guided". This result implies that load balancing is
more important for KNL 7210. “static" is approximately 3% faster
than “guided" for Xeon and KNL. Comparing “Hybrid+dynamic"
and “Flat", both are almost the same processing time in the case

HPC Asia, 2018 BLIND et al.

of KNL 7210. In the case of Xeon Gold 6150, “Hybrid+dynamic" is
36% faster than “Flat". Additionally, “Hybrid+static" is only 3.9%
faster than “Flat". We suppose that fine-grain domain decomposi-
tion (72 domains) in single node works equal to static scheduling.
One other thing to note here is that processing time of domain
decomposition subroutine which is not a target of this paper in-
creases in direct proportion to the number of domain. Projected
number of processing time of two KNL 7210 is shown in “KNL
7210 (Dual†)". If there are two KNL 7210, the performance will be
twice. The reason why is that the density calculation doesn’t have
inter-process communication and the number of particles in each
process is reduced in half. If we compare “KNL 7210 (Dual†)" with
Xeon Gold 6150 (Dual), Xeon Gold 6150 is 1.48 times faster than
KNL 7210.

Table 2: Scheduling policy and processing time[ms].

Parallelization Hybrid Hybrid Hybrid Flat
Scheduling Policy dynamic static guided N/A

of processes 2 2 2 72 or 256
of threads 36 36 36 N/A

KNL 7210 (Single) 104.1 117.2 121.1 105.4
KNL 7210 (Dual†) 52.1 58.6 60.6 52.7

Xeon Gold 6150 (Dual) 35.1 46.0 47.8 47.8

4.2 Tesla P100
Table 3 shows evaluation of optimization 1, 2 and block size. Op-
timization 1 (“Opt.1" in the table) is about 7 times slower than op-
timization 2 (“Opt.2" in the table). As we expected, optimization 2
utilizes cache much more efficient than that of optimization 1. For
optimization 2, best block size for both P100 is 32 or 64. We ex-
pected that block size 32 is better than that of 64 since the most of
chosen buckets contains less than 33 particles. When block size is
32 and a chosen bucket contains less than 33 particles, the thread
block is executed once. On the other hand, when a chosen bucket
contains 33 particles, the thread block is executed twice. In future
work, we will investigate the impact on the overall performance
of the bucket which contains 33 particles.

Table 3: Optimization, block size and processing time[ms].

Optimization Opt.1 Opt.2
block size 64 16 32 64 128

P100 (PCIe, Dual) 59.3 13.4 7.8 7.8 8.3
P100 (NVlink, Dual) 52.8 11.6 6.7 6.7 7.2

4.3 Xeon, Xeon Phi and Tesla P100
Figure 6 shows comparison of processing time of each computation
node. “P100 (NVlink, Dual) + block size 32" is the fastest among
four computational nodes. It is 5.2 times faster than dual XeonGold
6150 and 15.5 times faster than single KNL 7210. Both optimiza-
tions doesn’t utilize vector unit in Xeon/Xeon Phi. Even if loop-4 is
vectorized, indefinite loop and gather/scatter will degrade perfor-
mance. Different algorithm (e.g. Verlet list in molecular dynamics
[4]) might be required to vectorize the loop.

Figure 6: Processing time of each optimization.

5 CONCLUSION
In this paper, we present a porting and optimization of search of
neighbour-particle in our in-house MPS program.We give two op-
timizations; “Bucket per thread" and “Bucket per thread block".
Evaluation are conducted on four different computational nodes;
dual NVIDIA Tesla P100 (PCIe), dual Tesla P100 (NVlink), dual In-
tel Xeon Gold 6150 and single Xeon Phi 7210. When the number of
particles are 224,910. Processing time of each computational node
is 7.8, 6.8, 35.1 and 104.1, respectively. In future work, we will con-
duct a detailed analysis of proposed optimizations and find out
the way to vectorize search for neighbour-particle. We also com-
pare our OpenACC optimizations with another CUDA implemen-
tations.

ACKNOWLEDGMENT
Thisworkwas supported by JSPSKAKENHIGrantNumber 16K16064.

REFERENCES
[1] Seiichi Koshizuka and Y Oka. 1996. Moving particle semi-implicit method for

fragmentation of incompressible fluid. Nuclear Science and Engineering 123 (1996),
421–434.

[2] Kohei Murotani, Seiichi Koshizuka, Tasuku Tamai, Kazuya Shibata, Naoto Mit-
sume, Shinobu Yoshimura, Satoshi Tanaka, Kyoko Hasegawa, Eiichi Nagai, and
Toshimitsu Fujisawa. 2014. Development of Hierarchical Domain Decomposi-
tion Explicit MPS Method and Application to Large-scale Tsunami Analysis with
Floating Objects. Journal of Advanced Simulation in Science and Engineering 1, 1
(2014), 16–35. https://doi.org/10.15748/jasse.1.16

[3] Kohei Murotani, Issei Masaie, Takuya Matsunaga, Seiichi Koshizuka, Ryuji Sh-
ioya, Masao Ogino, and Toshimitsu Fujisawa. 2015. Performance improvements
of differential operators code for MPS method on GPU. Computational Particle
Mechanics 2, 3 (2015), 261–272. https://doi.org/10.1007/s40571-015-0059-2

[4] Simon J. Pennycook, Chris J. Hughes, M. Smelyanskiy, and S.A. Jarvis. 2013. Ex-
ploring SIMD for Molecular Dynamics, Using Intel Xeon Processors and Intel
Xeon Phi Coprocessors. 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing (2013), 1085–1097. https://doi.org/10.1109/IPDPS.2013.44

[5] Watanabe Seiya, Aoki Takayuki, Tsuzuki Satori, and Shimokawabe Takashi. 2015.
Neighbor-particle Searching Method for Particle Simulation Based on Contact
InteractionModel for GPUComputing. IPSJ Transactions on Advanced Computing
Systems 8, 4 (2015), 50–60.

[6] Yasuhide Sota, Akihide Watanabe, and Takashi Kojima. 2013. Accerelation of
the moving paricle semi-implicit method through multi-GPU parallel computing
with dynamic domain decomposition. Journal of Japan Society of Civil Engineers,
Ser. A2 (Applied Mechanics (AM)) 69, 2 (2013).

[7] H. Sun, Y. Tian, Y. Zhang, J. Wu, S. Wang, Q. Yang, and Q. Zhou. 2015. A Special
Sorting Method for Neighbor Search Procedure in Smoothed Particle Hydrody-
namics onGPUs. In Parallel ProcessingWorkshops (ICPPW), 2015 44th International
Conference on. 81–85. https://doi.org/10.1109/ICPPW.2015.46

