
I. MPS method and our in-house code; P-Flow

An optimization of search for neighbour-particle in MPS method
for Xeon, Xeon Phi and GPU by using directives

Takaaki Miyajima, Kenichi Kubota and Naoyuki Fujita
Numerical Simulation Research Unit, Aeronautical Technology Directorate,

Japan Aerospace Exploration Agency

III. Porting and optimization strategy

Complexity of data structure and memory access pattern

P100: Bucket per thread block, particles per CUDA thread

KNL and Skylake: Bucket per logical thread

MPS method is a sort of particle methods
used for computation fluid dynamics. It is
originally developed for simulating fluid
dynamics such as fragmentation of incom-
pressible fluid. Target fluid or objects are
divided into particles and each particle in-
teracts with neighbor-particles. Search of
neighbor-particles is a main bottleneck of
MPS method. We’re researching and deve-
loping in-house program.

Moving Particle Semi-implicit (MPS) method

Search for neighbour-particle with bucket

MPS performs search for neighbor-particle
multiple times in each time step (e.g. density
calculation). Each particle drifts as time-step
progress and neighbor-particle changes.

Equation of density

MPS simulation:
A collapse of water column

For physical values (SoA)

fp, allocatable :: p
fp, allocatable :: c

fp, allocatable :: x
fp, allocatable :: nden

Our in-house MPS code;
P-Flow adopts complex
data structure for
scalability and
extensibility. It is written
in Fortran and utilizes
multiple de-rived types.

In order to make maintenance easy and keep the structure of original
code, OpenACC and OpenMP are used for GPU and CPU, respectively.
OpenACC works well on the complex data structure.

The following 4-nested loop step is used.
1. Choose a target bucket
2. Pickup a target particle (red) in the bucket
3. Traverse 3*3*3 adjacent buckets (in no
particular order)
4. Search particles in a bucket
4-1. Calculate distance and weight
between the target particle

4-2. Accumulate weighted physical value
to a target particle (in no particular order)
 Maximum number of particles in a bucket is 33

For bucket management (AoS)

int :: numbktlist_array type(bktlist), dim(:), allocatable :: array int, dim(2,3) :: minmax

4B 312B 24B

int :: ibbktlist int :: rank int, dim(2,3) :: next type(bucket) :: dat

4B 4B 280B24B

type(bucket_particles) :: pc type(bucket_wall) :: wallbucket

8B 16B

type(bucket_aero) :: aero(8)

256B

int :: num int :: Id_lcbucket_particle

4B 4B

fp :: cg(3) fp :: rhogbucket_aero

24B 8B

int :: near int :: face_idbucket_wall

4B 4B

fp ::dist

8B

index calculation (ld_lc + num)

 Indefinite loop: number of
particles in a bucket is
uncertain

 Vectorization: Each target
particle accesses different
bucket and particle

 Cache: Not easy to utilize
cache since adjacent particles
changes time by time

 Parallelism: Thousands of in-
flight data requests can hide
memory access latency

II. Search for neighbour-particle

IV. Performance on P100, KNL and Skylake

Single prec.
[TFLOPS]

Clock (Bost)
[GHz] Number of Threads

Mem BW
[Gbps]

Single-KNL-7210 5.3 1.3 (1.5) 64 * 4HT = 256 480

Two-Xeon Gold 6150 N/A 2.7 (3.7) 18 * 2HT * 2CPUs = 72 256

Two-P100 (PCIe) 9.3 1.1 (1.3) 3,584 * 2GPUs = 7,168 732

Two-P100 (NVlink) 10.6 1.3 (1.4) 3,584 * 2GPUs = 7,168 732

Data sets
• Collapse of water column (40[cm]×40[cm]×8[cm])
• # of particles: 224,910, #of buckets: 70x70x14
• Average time of 200 time step of particle density computation

Compilers and configurations
• P100: PGI Compiler 17.7 w/ “-ta=nvidia:cc60,cuda8.0,fastmath”
• KNL7210 (Flat+Quadrant, 4HT) and Xeon Gold 6150 (2HT): Intel Compiler

2017 w/ “ –qopenmp -O3 -xCOMMON-AVX512 -fp-model fast=2”

52.1

35.1

7.8 7.4 6.8

0

10

20

30

40

50

Single KNL-7210 Xeon Gold 6150 Gold 6150+P100
PCIe

POWER8+P100
NVLink

E5-2695v4+P100
NVLink

P
ro

ce
ss

in
g

ti
m

e
 [

m
s]

Projected number of two-KNL
(104.2[ms] for single-KNL)

Each target bucket (Loop1) is assigned to thread
block. Each particle in the same bucket (Loop2)
is assigned to CUDA thread. Loop 3 and 4 are
processed sequentially by each CUDA thread.

Memory access of threads in bucket becomes
the same since each particle in the same bucket
accesses the same particle in loop 3 and 4. But
not coalesced and low bandwidth utilization.
Utilization of CUDA thread is low since the # of
particle in bucket often becomes less than 32.

Particles in the
same bucket

0
1
2
3
4

26

…

0
1
2
3
4

26

…

0
1
2
3
4

26

…

0
1
2
3
4

26

…

0
1
2
3
4

26

…

0
1
2
3
4

26

…

…

Particles in the
same bucket

0
1
2
3
4

26

…

0
1
2
3
4

26

…

0
1
2
3
4

26

…

0
1
2
3
4

26

…

0
1
2
3
4

26

…

0
1
2
3
4

26

…

…

Particles in the
same bucket

0
1
2
3
4

26

…

0
1
2
3
4

26

…

0
1
2
3
4

26

…

0
1
2
3
4

26

…

0
1
2
3
4

26

…

0
1
2
3
4

26

…

…

Particles in the
same bucket

0
1
2
3
4

26

…

0
1
2
3
4

26

…

0
1
2
3
4

26

…

0
1
2
3
4

26

…

0
1
2
3
4

26

…

0
1
2
3
4

26

…

…

32 threads / block

Step
 3

 an
d

 4

Memory access pattern and Characteristics

Each target bucket (Loop1) is assigned to logical
thread. Loop 2~4 are processed sequentially by
each thread. OpenMP’s “schedule (dynamic)”
clause is used for load balancing since the # of
particles in bucket is different.

Memory access of threads is different and
cache utilization is very low. Vectorization is not
done as well. Different algorithm (e.g. Verlet list
in molecular dynamics) is required to solve these
problems. KNL and Skylake achieved higher
performance when Hyper-Threading is enabled.

Performance is different when
host processor is different

P100 is x4.5 faster than Skylake

Bucket

0

1

2

3

4

26

…

0

1

2

3

4

26

…

0

1

2

3

4

26

…

0

1

2

3

4

26

…

Bucket / thread

Search for neighbor-particle

10

35

2 4

34

14

5

31

3

11

32

33

36

1

13

12

Traversed bucket

Chosen bucket

6

15

N : N-th particle : Adjacent buckets

loop-3. Traversed adjacent buckets

loop-4. Particles in the traversed bucket
1 2 3 1110

loop-4-1,2. Calculate physical quantity
12

loop-2. Particles in the chosen bucket
12 13

loop-1. Choose bucket
: Bucket structure

array

: Particle index
array

: Bucket structure
array

: Particle position
array

: Particle quantity
array

In
-d

irect accesses
In

d
efin

ite lo
o

p
A

ccu
m

u
latio

n

