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1 ABSTRACT 
For big data processing, it is reasonable to offload complicated jobs 
to cloud for efficiency. However, due to the security attacks from 
rogues, there is a risk of sensitive information leakage [on cloud 
system side. Especially, if the data set includes privacy sensitive 
information, users may hesitate to utilize the cloud services due to 
the security concerns. In this paper, we introduce a hardware-based 
privacy preserving MapReduce framework[1] and enhance it with 
two key techniques: Separate barrier and module combining 
scheme. Both schemes not only enhance the system performance 
by efficient data flow control but optimize the hardware resource 
utilization to fit in the capacity of hardware as well. The 
implementation of system is executed on Zynq-7000 
programmable SoC device[2] from Xilinx. The combining scheme 
boasts of at least a 2.20x faster performance in the experiment. 

2 PROPOSED SYSTEM AND TECHNIQUES 

2.1 Proposed Hardware-Based Privacy-reserving 
MapReduce System 

Figure 1: Overview of Secure Hardware MapReduce System 

As shown in Fig .1, the proposed system is composed of an x86 
server machine as a master node, and programmable SoCs as slaves. 

In our scenario, with CAD tools provided by FPGA vendor, user 
can automatically create hardware mappers and reducers with AES 
crypto modules via High Level Synthesis (HLS) tool[3]. They are 
integrated to a single bitstream file and the file is re-encrypted with 
AES key. User also should encrypt his data with AES. After that, 
the AES key is further re-encrypted with RSA[4] public key of 
FPGA. Then, all the encrypted data, encrypted hardware design, 
and re-encrypted AES key are transferred to the cloud. In the 
system, the root of trust is the re-encrypted AES key which will be 
decrypted inside FPGA by its private key. Because system 
configuration as well as data processing is done as enclaved format 
in tamper-resistant FPGA, the proposed system is secure from 
rogue users even they get the root authority of system.  

2.2 Optimizing Schemes on the Hardware-based 
Privacy-Preserving MapReduce 

The separate barrier and combining scheme are shwon in Fig .2.  

(a) Separate Barrier Scheme        (b) Combining Scheme 
Figure 2: Proposed techniques on Secure MapReduce 
Framework 

- Separate barrier: It eases the bottleneck of global barrier 
between mapper and reducer by localizing them. The separate 
barrier is implemented with a simple counter in the head of 
each reducer, where the counter is initially set to the number 
of inputs. If data set from a mapper comes in, the counter is 
decreased by one. When all the inputs of reducer are available, 
the counter reaches 0 and reducer starts the task processing. 
After finishing reducer job, separate barrier counter will be re-
initialized to the number of inputs. 



- Module combining is conditional scheme. If there is no 
complicated shuffling between mappers and reducers so that 
they can be serialized by certain input data chunk, the mappers 
and reducers can be combined and configured on a single 
FPGA board with separate barrier.  

3 IMPLEMENTATION AND EXPERIMENT 
RESULT 

3.1 Target Applications and its Parameters 
In the experiment, we use two target applications (K-means and 
DNA sequencing) for implementation. K-means clustering is one 
of the most commonly used algorithms in big data processing. 
Given a set of n data where each data corresponds to a point in a d-
dimensional space, its goal is to cluster closest data points, 
aggregating data set into k-groups. DNA sequencing is an 
application where users’ DNAs are compared against reference 
DNAs. After data processing, the application scores the difference 
between them. DNA sequence is divided into a certain size of 
blocks. In the mapper phase, each block is further divided by certain 
string size by enumerating all possible consecutive subsequences. 
The parameters of the target applications are shown in Table 1. 

Table 1: Parameters in Target Applications 
Applications Parameters 

K-means # Centroid 
(16, 32, 48) 

# Dimension 
(4, 6, 8)

DNA sequencing Block size 
(16, 32, 48) 

String size 
(6, 8 , 10)

3.2 Optimizing Method of FPGA via HLS 
We implemented our proposed schemes using Zynq-7000 [2] 
(xc7z020clg484-1) programmable SoC device. Zynq-7000 has two 
interacting parts: processing system (dual Cortex-A9s) and 
Programmable Logic (PL). The target applications are originally 
written in C. To convert the C code to hardware, we use a CAD tool 
called Vivado High Level Synthesis (HLS) from Xilinx. The 
hmac[5] and RSA[4] decryption module are also originally written 
in C and converted to Verilog via Vivado HLS in the same way. 
Note that HLS cannot convert dynamic functions to hardware like 
malloc(). In addition, some libraries are also not supported. 
Therefore, our target applications are partially tuned to adjust the 
hardware conversion mechanism on Zynq-7000. 
For the performance tuning, we insert some directives in the 
original C code. The PIPELINE directive allows efficient data 
processing by increasing hardware utilization. The 
ARRAY_PARTITION and RESOURCE directives allow the Cortex-
A9 to access IP data as memory mapped registers. The input of 
RSA decryption module, the input of AES decryption module, and 
the output of AES encryption module are configured with those 
directives for access from Cortex-A9.  
In the experiment, to maximize the throughput of mapper and 
reducer, AES crypto modules are configured as many as possible 
in each programmable SoC. However, zynq has limited resources. 
If the implemented hardware module exceeds the capacity of it, the 

module cannot be configured as maximum throughput. Algorithms 
for handling this situation is shown in Algorithm 1 (for separate 
barrier) and Algorithm 2 (for combining scheme). 

ALGORITHM 1. Integrated MapReduce Module 
Configuration Algorithm for Separate Barrier Scheme 

D = # bits of AES decrypt module 
E = # bits of AES encrypt module 
i = 1; 
j = 1; 
݀= ܦہ/ሺ128 ∗݅ሻۂ; 

݁= ܧہ/ሺ128  ;ۂ݆∗
repeat 
if (݀*cost(AES decrypt) > ݁*cost(AES encrypt)) 

i = i+1; 
else  

j = j+1; 
until (݀*cost(AES decrypt) + cost(mapper or reducer) + 

݁*cost(AES encrypt) < capacity) 

configure SoC;

ALGORITHM 2. Integrated Combining Module 
Configuration Algorithm 

M = # of mappers to one reducer  
D = # bits of AES decrypt module 
E = # bits of AES encrypt module 

ܶ	= # of cycle for mapper 

ௗܶ = # of cycle of AES decrypt module 

ܶ = # of cycle of AES encrypt module 
i = 1; 
j = 1; 
݀= ܦہ/ሺ128 ∗݅ሻۂ; 

݁= ܧہ/ሺ128  ;ۂ݆∗
݉= ۂ݅/ܯہ; 

repeat 
if ( ݀ *cost(AES decrypt) + ݉ *cost(mapper) + 
cost(reducer) + ݁ାଵ*cost(AES encrypt) < capacity) 

j = j+1; 
else if (݀ାଵ*cost(AES decrypt) + ݉ାଵ*cost(mapper) + 

cost(reducer) + ݁*cost(AES encrypt) < capacity) 
i = i+1; 

else 
if  (ሼሺ݀െ݀ାଵሻ ∗ decryptሻ	ሺAESݐݏܿ 	 	ሺ݉ െ ݉ାଵሻ ∗

costሺmapperሻሽ	/	ሺT୫  Tୢ ሻ 
<  ሺ݁െ ݁ାଵሻ ∗ Tୣ		/	encryptሻ	ሺAESݐݏܿ ) 

j = j+1; 
else 

i = i+1; 
until ( ݀ *cost(AES decrypt) + ݉ *cost(mapper) +  

cost(reducer) + ݁*cost(AES encrypt) < capacity) 

configure SoC;



3.3 Evaluation and Analysis 
The integrated module configurations applying Algorithm 1 and 
Algorithm 2 are shown in Table 2 and Table 3, respectively. 

Table 2: Integrated Module Configuration Applying Algorithm 1 

Applications Modules Parameters 
FPGA 
Configuration 

K-means 

Mapper 
4 Dimension Fully Configured 
6 Dimension Fully Configured 
8 Dimension Fully Configured 

Reducer 
16 Centroid Fully Configured 
32 Centroid AES Decrypt 1/2 
48 Centroid AES Decrypt 1/2 

DNA 
sequencing 

Mapper 

16 Block, 6 String Fully Configured 
16 Block, 8 String Fully Configured 
16 Block, 10 String Fully Configured 
32 Block, 6 String AES Encrypt 1/2 
32 Block, 8 String AES Encrypt 1/2 
32 Block, 10 String AES Encrypt 1/2 
48 Block, 6 String AES Encrypt 1/2 
48 Block, 8 String AES Encrypt 1/2 
48 Block, 10 String AES Encrypt 1/2 

Reducer 

16 Block, 6 String AES Decrypt 1/2 
16 Block, 8 String Fully Configured 
16 Block, 10 String Fully Configured 
32 Block, 6 String AES Decrypt 1/3 
32 Block, 8 String AES Decrypt 1/3 
32 Block, 10 String AES Decrypt 1/3 
48 Block, 6 String AES Decrypt 1/4 
48 Block, 8 String AES Decrypt 1/5 
48 Block, 10 String AES Decrypt 1/5 

Table 3: Integrated Module Configuration Applying Algorithm 2 
Applications Parameters FPGA Configuration 

K-means 

4 Dimension, 16 Centroid AES Decrypt, Map 1/3 
4 Dimension, 32 Centroid AES Decrypt, Map 1/5 
4 Dimension, 48 Centroid AES Decrypt, Map 1/7 
6 Dimension, 16 Centroid AES Decrypt, Map 1/3 
6 Dimension, 32 Centroid AES Decrypt, Map 1/6 
6 Dimension, 48 Centroid AES Decrypt, Map 1/9 
8 Dimension, 16 Centroid AES Decrypt, Map 1/4 
8 Dimension, 32 Centroid AES Decrypt, Map 1/8 
8 Dimension, 48 Centroid AES Decrypt, Map 1/12 

DNA 
sequencing 

16 Block size, 6 Sub Fully Configured 
16 Block size, 8 Sub Fully Configured 
16 Block size, 10 Sub Fully Configured 
32 Block size, 6 Sub Fully Configured 
32 Block size, 8 Sub Fully Configured 
32 Block size, 10 Sub Fully Configured 
48 Block size, 6 Sub Fully Configured 
48 Block size, 8 Sub Fully Configured 
48 Block size, 10 Sub Fully Configured 

Fig .3 shows the hardware resource utilization of integrated mapper 
and reducer modules when applying Algorithm 1. In most cases, it 
is insufficient BRAM resources that cause a modification of the 
initial configuration. As the AES module occupies the majority of 
BRAM resources, it is split by Algorithm 1. The execution time of 
integrated mapper and reducer module for separate barrier scheme 
is shown in Fig .4 and it implies that hmac is the critical path of 

both target applications in all the cases of mapper. Because 
reducers do not contain hmac module, all the reducers are relatively 
faster than the corresponding mapper. 
Fig .5 shows the hardware cost of integrated combined module with 
the configurations of Algorithm 2. Fig .6 shows the execution time 
of integrated combined module when applying combining scheme. 
Even not considering the network traffic between programmable 
SoC and Cortex-A9, the combining scheme shows quite 
remarkable speedup. Especially in DNA Sequencing, as assuming 
the number of utilizing boards is same, the highest speedup 
(293.08x) is achieved with the case of 16 Block size and 10 String 
size in DNA Sequencing whereas the lowest speedup (2.20x) is 
achieved with the case of 8 dimension and 48 centroids in K-means. 
The elimination of AES crypto module makes more MapReduce 
modules can be accommodated and the elimination of hmac 
module reduces the processing time of mappers dramatically.  

Figure 3: Hardware resource utilization of integrated modules 
applying separate barrier 

Figure 4: Execution time of integrated modules applying 
separate barrier 



Figure 5: Hardware resource utilization of integrated modules 
applying combining scheme 

Figure 6: Execution time of integrated modules applying 
combining scheme 

4 RELATED WORK 
There have been efforts of accelerating MapReduce in two ways: 
the first takes advantage of off-the-shelf fixed parallel computing 
resources such as GPU, Xeon Phi, and many-core processors[6-10] 
and the second one utilizing reconfigurable hardware[11-13]. In the 
reconfigurable camp, Mershad et al[11]  proposed a new service 
model where users can choose to pay a premium for faster data 
processing by exploiting FPGAs. Lin et al[12] proposed an eight 
Zynq-based Hadoop cluster, referred to as ZCluster. Shan et al[13] 
implemented a MapReduce framework on FPGA, referred to 
FPMR. In FPMR, the whole process of the mapper and reducer is 
conducted on the FPGA side, and the mapper and reducer are 
scheduled by hardware queue. There are a few studies on reducing 
the synchronization overhead of MapReduce by eliminating the 
global barrier[14, 15]. Elteir et al [14] proposed a hierarchical 
reduction, where the map and reduce processing is overlapped at 
the inter-task level and the reduce task gets started as soon as a 
certain number of map tasks complete. The partial outputs from 
reducers are aggregated following a tree hierarchy. Verma et al [15] 
classified reduce operations according to applications’ 
characteristics, and eliminated the global barrier in Hadoop by 
using tree based scheme. 
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