XcalableACC parallel language

Overview
XcalableACC (XACC) is a directive-based language extension of C and Fortran for accelerated cluster systems (C++ on the table).
- High productivity by directives and coarray features
- High performance by direct communication between accelerators

Components
- XcalableMP (XMP) for distributed-memory parallelism
 ![XcalableMP](image1.png)
 XMP is a directive-based language extension of C and Fortran for cluster systems
- OpenACC for offloading works for accelerators
 ![OpenACC](image2.png)
 OpenACC is also directive-based language extension for heterogeneous CPU/Accelerator systems
- XACC for communication of data on accelerators

Implementation of NICAM-DC-MINI

What is NICAM-DC-MINI?
- A subset of NiCAM dynamical core package
- NiCAM stands for Nonhydrostatic ICosahedral Atmospheric Model, which is an application for Global Cloud Resolving Model
- Developed by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Atmosphere and Ocean Research Institute (AORI) at The University of Tokyo, and RIKEN Advanced Institute for Computational Science (AICS).

Implementation
- Based on the existing NICAM-DC-MINI using MPI and OpenACC
- To exchange sleeve regions among processes, we use coarray features instead of MPI
 - MPI_Send/Isend → coarray assignment
 - MPI_Recv/irecv → (be deleted)
 - MPI collective communication → intrinsic subroutine (e.g. co_max)
 - MPI_Wait and MPI_Barrier → sync all statement

```fortran
do r=1,romax(halo)
   call mpi_recv(recvbuf(1,ro), rsize(ro,halo)*cmax, mpi_double_precision,   &
                 sourcerank(ro,halo), recvtag(ro,halo),                                   &
                 ADM_comm_run_world, areq(ro), ierr)
end do

do s=1,somax(halo)
   call mpi_isend(sendbuf(1,so), ssize(so,halo)*cmax, mpi_double_precision,  &
                 destrank(so,halo), sendtag(so,halo),                                        &
                 ADM_comm_run_world, areq(so+romax(halo)), ierr)
end do

call mpi_waitall(acount,areq,stat,ierr)
```

Additional sync all statement is required to ensure that the array recvbuf on all images can be used.

```fortran
sync all
do s=1,somax(halo)
   recvbuf(1:ssize(so,halo)*cmax, disting((so)[destrank(so,halo)+1] =
    & sendbuf(1:ssize(so,halo)*cmax,so)
end do
sync all
```

Evaluation on HA-PACS/TCA

- On HA-PACS/TCA system located in University of Tsukuba
- Each computer nodes has four GPUs (NVIDIA K20X)
- Data set is g06r012z80, which is executed with strong scaling
- The results of XACC are almost the same as those of OpenACC + MPI

Acknowledgement
This research was supported by Interdisciplinary Computational Science Program in the Center for Computational Sciences, University of Tsukuba and the JST CREST entitled ‘‘Research and Development on Unified Environment of Accelerated Computing and Interconnection for Post-Petascale Era’’.