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1 INTRODUCTION
Convolutional Neural Networks (CNNs) have achieved
notable success particularly in the field of image recog-
nition and image processing. Although there are many
libraries which accelerate computation of CNNs with a
GPU, few works can compute in case over GPU memory
capacity. For example, learning of VGG16 network [1]
with a 1024-images batch consumes about 60 GB mem-
ory. Unfortunately, a Tesla P100, which is a NVIDIA
GPU recently released, has only 16 GB memory. Fur-
thermore, such workloads with existing CNN libraries
take significant large overhead due to CPU-GPU com-
munication. In other words, swiftly computing CNNs
over GPU memory capacity is an important issue.

We developed ooc cuDNN[2] library, which enables
a NVIDIA GPU to support CNNs consuming mem-
ory over GPU memory capacity. ooc cuDNN’s inter-
face is compatible with cuDNN [3], a deep neural net-
work library for NVIDIA GPUs. Our methodology of
ooc cuDNN is dividing the data into the parts and swap-
ping them between the GPUmemory and the host mem-
ory.

In this poster, we present design and implementa-
tion of ooc cuDNN. ooc cuDNN is implemented an op-
timization technique based on performance models we
built. Additionally, ooc cuDNN provides fused functions
as combination of some computation to reduce extra
communication. Thanks to ooc cuDNN, a Tesla P100
can process a learning task which consumes larger than
GPU memory capacity with 10-13 % overhead.

2 OOC CUDNN
ooc cuDNN enables a GPU to infer and/or learn in
cases the batch, channels, and/or feature map are larger
than the GPU memory capacity. Generally, interface of
ooc cuDNN is compatible with one of cuDNN. This sec-
tion shows design and implementation of ooc cuDNN.

Figure 1: How to divide the data in ooc cuDNN

2.1 Design
To process larger data than GPU memory capacity, we
designed computation functions of ooc cuDNN as fol-
lows:

• Input data and output data can be stored into
either the host memory and the GPU memory.

• Batches, channels, and feature maps are divided.
Then, the GPU computes each part.

• If the data needed for the computation are stored
into the host memory, swapping between the host
memory and the GPU memory is caused.

• Computation is executed with the GPU using cuDNN.
• To reduce the overhead, the communication is over-
lapped with the computation.

Fig. 1 shows how to divide the data in convolution
computation. X denotes an input layer, W denotes an
weight filter, and Y denotes an output layer. ooc cuDNN
divides X, Y, and W. Each part of Y (yellow cells) is
computed based on the part of X (blue cells) and W
(green cells).

2.2 Optimizing division sizes
In ooc cuDNN, all layers and weight filters can be di-
vided. This means that there are various ways to divide
them. The division sizes are affected by ooc cuDNN’s
performance. To optimize division sizes, we modeled
ooc cuDNN’s performance. Based on this model, ooc cuDNN
decides division sizes.
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Figure 2: Result of micro benchmark

Our performance model is built considering with the
performance of cuDNN and the communication between
the CPU and the GPU. The division sizes are chosen to
maximize the performance based on our model.

2.3 Fused functions
Our method described above enables a GPU to com-
pute convolution fast even if the data are larger than
the GPU memory capacity. On the other hand, com-
plexity of some computation in CNNs (bias, activating,
and pooling) are so small that the communication time
is much larger than the computation time. Such small
computation causes large overhead because they cannot
hide the communication.

ooc cuDNN provides fused functions. A fused func-
tion conducts a convolution computation and some of
the small computation at once. Communication for all
computation in a fused function are aggregated. There-
fore, the communication can be hidden mainly by con-
volution computation.

3 PERFORMANCE EVALUATION
We measured ooc cuDNN’s performance. Our measure-
ment used a computer with a NVIDIA Tesla P100, which
has 16 GB memory.

3.1 Micro benchmark
We measured ooc cuDNN’s performance with a pro-
gram computing a convolution. The program using
ooc cuDNN is compared to three programs as follows:

• cuDNN: using original cuDNN.
• unified cuDNN: using original cuDNN but the mem-
ory region is allocated as Unified Memory, an au-
tomatic swapping mechanism introduced to recent
NVIDIA GPUs.
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Figure 3: Performance of VGG16 with our C++
program

• unified cuDNN (prefetch): same as unified cuDNN
except the memory region is prefetched to GPU
memory by cudaMemPrefetchAsync().

The input data size was 1024×1024, the batch size was
1, and the filters sizes were 3× 3.

The result is shown as Fig. 2. cuDNN could not com-
pute when the channel size was 2048 × 2048. This is
because the data are larger than the GPU memory ca-
pacity.

The other programs could compute even the larger
channel case. ooc cuDNN computes 1.45x faster than
unified cuDNN and 1.42x faster than unified cuDNN
(prefetch). There are two reasons:

• The communication could not overlap with the
computation.

• Page faults caused in GPU were occurred.

As we described above, in ooc cuDNN, the communica-
tion overlaps the computation. In addition, ooc cuDNN
does not cause such page faults.

3.2 Performance of VGG16
Wemeasured ooc cuDNN’s forwarding and back-propagating
performance using a practically used CNN, VGG16.
Our measurement executed forwarding once and back-

propagation once with ooc cuDNN and cuDNN. In this
experiment, we used a C++ program that calls ooc cuDNN
or cuDNN functions without any frameworks. Also, we
used fused functions when using ooc cuDNN.
The result is shown as Fig. 3. When the batch size is

greater than or equal to 256, the data are larger than the
GPU memory capacity. Thus, cuDNN could not com-
pute in those cases.
ooc cuDNN could compute in such cases. Compared

to cuDNN with a 128-images batch, ooc cuDNN com-
putes larger batches only with 10-13% overhead.
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Figure 4: The number of images computed per
second of VGG16 with Caffe2

3.3 Integrating with deep learning
frameworks

We implemented Caffe2 with ooc cuDNN and evaluated
the performance. Caffe2[4] is an existing deep learning
framework developed by Facebook.

Our measurement executed 100 traning iterations of
VGG16 with original Caffe2, ooc Caffe2 and unified Caffe2
as follows:

• ooc Caffe2 : using ooc cuDNN functions in Caffe2
(We modified Caffe2’s source code to support ooc cuDNN).
In current design, fused functions is not supported.

• unified Caffe2 : using original cuDNN in Caffe2,
and the memory region is allocated as Unified Mem-
ory.

The result is shown as Fig. 4. When the batch size is
greater than or equal to 128, original Caffe2 could not
compute because of GPU memory shortage. In contrast,
ooc Caffe2 and unified Caffe2 could compute in such
cases. When exceeding GPUmemory capacity, ooc Caffe2
could computes 1.7x-3.1x faster than unified Caffe2.
In the current ooc Caffe2, a large amount of CPU-

GPU communication occurs and the overhead leads to
performance degradation. Therefore, we will implement
ooc Caffe2 supporting fused functions to reduce the num-
ber of communication.

4 CONCLUSION
Most GPU libraries cannot compute CNNs which con-
sume larger memory than GPUmemory capacity. ooc cuDNN
enables such computation with GPUs.

Thanks to optimization based on ooc cuDNN’s per-
formance model and aggregating communication between
CPU and GPU, ooc cuDNN can compute forwarding
and back-propagating 10-13% overhead even if the data
are larger than GPU memory capacity.
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