ooc_cuDNN : A Deep Learning Library Supporting CNNs over GPU Memory Capacity

Yuki Ito, Ryo Matsumiya, Toshio Endo (Tokyo Institute of Technology)

Background

•Convolutional neural networks (CNNs) are used in many fields.

 \geq Image recognition, Image processing, speech recognition, etc...

- cuDNN [1] library can accelerate computation of CNNs
- Developed by NVIDIA
- >Used by many deep learning frameworks ► Use graphic processing units (GPUs) effectively

Motivation

- ➢ It is hard for large scale CNNs to be computed using cuDNN
 - CuDNN can use GPU memory only GPU memory capacity is limited

- GPU (P100) GPU 732 GB/s cores **GPU** memory CPU 16 GB 8 GB/s CPU memory 128 GB
- ✓ Even computation of one layer may run out of GPU memory

Memory usage per convolutional layer in VGG16 [2] (Batch size = 1024)

Our solution

- •We designed and implemented *ooc_cuDNN* [2] library.
- ooc_cuDNN (out-of-core cuDNN) supports large scale CNNs
 - \succ Compatible with cuDNN
 - \succ Enable to compute CNNs that exceed GPU memory capacity
 - Use both GPU and CPU memory

Divide layers and filters

Each layer (or filter) is put on GPU or CPU memory \succ Divided data are used for computation on GPU with cuDNN. Swap data between CPU and GPU memory Overlap CPU-GPU communication and computation

Optimization(1) : Auto-tuning division sizes

 Performance of ooc_cuDNN is affected by each division size. ➢ Make performance model

\triangleright Optimize division size based on the model.

$$\begin{split} T_{conv} &= t_{HtoD} + t_{conv} + t_{DtoH} \\ &+ \left(\left[\frac{c_x}{d_c c_x} \right] - 1 \right) \max(t_{HtoD}, t_{conv}) \\ &+ \left(\left[\frac{n}{d_c n} \right] \left[\frac{c_Y}{d_c c_Y} \right] \left[\frac{h_Y}{d_c h_Y} \right] - 1 \right) \max\left(\left[\frac{c_x}{d_c c_x} \right] t_{HtoD}, \left[\frac{c_x}{d_c c_x} \right] t_{conv}, t_{DtoH} \right) \end{split}$$

Performance model of convolution

Optimization(2) : Fusion of computations

Evaluation

• Apply *ooc_cuDNN* to CNN application Forward and Backward of VGG16[3]

> The required memory size increases according to batch size.

• Experiment with Tesla P100

▶ooc cuDNN enables to compute CNN exceeding

GPU memory capacity.

VGG16 network structure [2]

Integrating with deep learning framework

•We implemented *ooc_Caffe2* (Caffe2 with ooc_cuDNN). \succ Caffe2[4] is a deep learning framework developed by Facebook. >Not support ooc_cuDNN's fused functions in current design.

• For comparison, we implemented *unified_Caffe2*.

- \succ Use original cuDNN, and allocate data as Unified Memory.
 - Unified memory supports data exceeding GPU memory capacity by swapping mechanism between CPU and GPU.
- \succ ooc_Caffe2 is > x1.7 faster in out-of-core cases.

Future work

Optimization considering the entire CNN

- \succ Which data should be put on CPU memory?
- \succ Which computation should be fused?

•Improve ooc Caffe2 ► Use fused functions Support distributed computation

- [1] NVIDIA Corporation, NVIDIA cuDNN, https://developer.nvidia.com/cudnn
- [2] Yuki Ito et al. ooc cuDNN: Accommodating Convolutional Neural Networks over GPU Memory Capacity, IEEE BigData, 2017
- [3] Karen Simonyan et al. Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR, 2015 [4] Facebook, Caffe2 | A New Lightweight, Modular, and Scalable Deep Learning Framework,
- https://caffe2.ai/

This work is supported by JST-CREST, "Software Technology that Deals with Deeper Memory Hierarchy in Post-petascale Era"