ooc_cuDNN : A Deep Learning Library Supporting CNNs over GPU Memory Capacity

Yuki Ito, Ryo Matsumiya, Toshibo Endo (Tokyo Institute of Technology)

Background

- Convolutional neural networks (CNNs) are used in many fields.
 - Image recognition, Image processing, speech recognition, etc...

cuDNN [1] library can accelerate computation of CNNs
- Developed by NVIDIA
- Used by many deep learning frameworks
- Use graphic processing units (GPUs) effectively

Motivation
- It is hard for large scale CNNs to be computed using cuDNN
- cuDNN can use GPU memory only
- GPU memory capacity is limited
 - Even computation of one layer may run out of GPU memory

Our solution

- We designed and implemented ooc_cuDNN [2] library.
- ooc_cuDNN (out-of-core cuDNN) supports large scale CNNs
 - Compatible with cuDNN
 - Enable to compute CNNs that exceed GPU memory capacity
 - Use both GPU and CPU memory
 - Divide layers and filters
 - Each layer (or filter) is put on GPU or CPU memory
 - Swap data between CPU and GPU memory
 - Overlap CPU-GPU communication and computation

Optimization(1) : Auto-tuning division sizes

- Performance of ooc_cuDNN is affected by each division size.
 - Make performance model
 - Optimize division size based on the model.

Optimization(2) : Fusion of computations

- Performance of low complexity computations is too low in ooc_cuDNN.
 - In those computations, communication can not be hidden completely.
 - Provide fused functions that perform high complexity computations and low complexity computations at once.

Evaluation

- Apply ooc_cuDNN to CNN application
 - Forward and Backward of VGG16[3]
 - The required memory size increases according to batch size.
- Experiment with Tesla P100
 - ooc_cuDNN enables to compute CNN exceeding GPU memory capacity.

Integrating with deep learning framework

- We implemented ooc_Caffe2 (Caffe2 with ooc_cuDNN).
 - Caffe2[4] is a deep learning framework developed by Facebook.
 - Not support ooc_cuDNN’s fused functions in current design.
- For comparison, we implemented unified_Caffe2.
 - Use original cuDNN, and allocate data as Unified Memory.
 - Unified memory supports data exceeding GPU memory capacity by swapping mechanism between CPU and GPU.
 - ooc_Caffe2 is > x1.7 faster in out-of-core cases.

Future work

- Optimization considering the entire CNN
 - Which data should be put on CPU memory?
 - Which computation should be fused?
- Improve ooc_Caffe2
 - Use fused functions
 - Support distributed computation

This work is supported by JST-CREST, “Software Technology that Deals with Deeper Memory Hierarchy in Post-petascale Era”