
vGASNet:	A	PGAS	Communication	Library	Supporting	Out-of-Core	Processing
Ryo	Matsumiya and	Toshio	Endo
Tokyo	Institute	of	Technology

vGASNet overview

Cache	mechanism	overview

u Remote	memory	access	based	communication	library.
u The	interface	is	similar	to	GASNet [1].
u Two	memory	regions	are	available.

u Segmented	memory	region
u Can	be	accessed	by	other	nodes.
u Allocated	in	node-local	SSDs

with	vgasnet_allocate().
u Non-segmented	memory	region

u Local	access	only.
u Allocated	in	DRAM	with	general

memory	allocate	functions	(e.g.	malloc()).

Related	work
u ComEx-PM	[6]

u A	PGAS	communication	library	supporting	out-of-core	
processing.

u The	cache	mechanism	depends	on	Linux	VFS	cache
u HHRT	[7],	Papyrus	[8]

u Ease	MPI	programs	of	supporting	out-of-core	processing.
u Unlike	vGASNet,	their	interface	is	not	based	on	remote	

memory	access.
[1]	Chan	and	Igual,	Runtime	Data	Flow	Graph	Scheduling	of	Matrix	Computations	with	Multiple	Hardware	Accelerators,
FW	Note,	50		(1996)
[2]	Dahlin et	al.,	Cooperative	Caching:	Using	Remote	Client	Memory	to	Improve	File	System	Performance,	in	Proc.	of	OSDI	’94
[3]	AMD,	AMD64	Architecture	Programmer’s	Manual	Vol.2	System	Programming.
[4]	Kanter,	The	Common	System	Interface:	Intel’s	Future	Interconnect,	Real	World	Tech	5.

u SSD	is	much	slower	than	DRAM.
u Under	vGASNet,	each	node	has	their	own	cache	pool	on	DRAM.

u Page-based	cache
u Reducing	the	amount	of	accesses	to	the	SSDs,	vGASNet adopts	

cooperative	caching	mechanism.
u Using	not	only	local	caches	but	also	remote	caches.
u Firstly	implemented	in	a	distributed	file	system	[2].

Performance	evaluation
u Conducted	with	TSUBAME-KFC/DL	[5].
u Page	size	is	4	MB.
u The	cache	pool	size	of	each	node	is	about	16	GB.

CPU Xeon	E5-2620v2×2 Network Infiniband 4x	FDR
DRAM DDR3-1600	64	GB OS CentOS 7.3
SSD SATA3	480	GB Filesystem XFS

u Each	page	is	originally	stored	in	the	SSD	of	its	owner.
u Each	node	has	a	cache	table,	which	assigns	its	own	pages	with	the	

node	whose	DRAM	stores	the	cache.
u The	rough	flow	of	forwarding	cache	is	below.

u In	this	example,	node	B	is	to	receive	a	page	of	node	A.
(1) Node	B	requests	node	A.
(2) Node	A	refers	its	own	cache	table.
(2-a)	When	node	C	has	a	cache	of	the	page,	node	A	forwards	the	
request	to	node	C.
(3-a)	Node	C	sends	the	page	cache	to	node	B.
(2-b)	When	no	node	has	any	caches	of	the	page,	node	A	reads	the	
original	page	from	its	SSD	to	the	buffer.
(3-b)	Node	A	sends	the	buffer	to	node	B.
(4)	When	node	B	has	received	the	cache,	node	B	requests	node	A	to	
register	the	cache	with	node	A’s	cache	table

CPU

DRAM	(64	GB)

SSD	(480	GB)

B C

A
(1),(4)

(2-a)

(3-a)

This	work	is	supported	by	JST-CREST,	“Software	Technology	that	Deals	with	Deeper	Memory	Hierarchy	in	Post-petascale era”.

500	MB/s

102.4	GB/s

Future	work
u Implementing	a	practical	PGAS	runtimes.

u Undergoing:	UPC++
u Performance	evaluation	using	practical	applications.

u Numerical	solver,	machine	learning,	genetic	analysis,	etc.

Background
u Partitioned	Global	Address	Space	(PGAS)	eases	

distributed	programming.
u Out-of-core	processing	is	required	in	many	

fields.
u Few	PGAS	frameworks	support	out-of-core	

processing.
u Node-local	SSDs	are	available	for

out-of-core	processing.

(3-b)

Node 1 Node 2
Non-seg. Non-seg.

Seg. Seg.

Cooperative	caching

u Guaranteeing	cache	consistency	is	challenging.
u In	vGASNet,	MOESIF	protocol	is	implemented	as	a	cache	coherence	

protocol.
u MOESIF	protocol	is	based	on	two	practical	protocol.

u MOESI	protocol	[3]
u Used	in	AMD	64-bits	multicore	processors.
u Dirty	caches	are	not	evicted	if	the	same	page	is	cached	in	

another	node.
u MOSIF	protocol	[4]

u Used	in	Intel	multicore	processors.
u The	node	whose	cache	is	used	to	forward	the	cache	is	

specified	per	cache	line.

u The	performance	is	evaluated	by	loading	the	data	stored	in	one	node.
u (w/o	CC)	means	cooperative	caching	is	not	used.

0

1000

2000

3000

4000

4 32 256 2048 16384 131072

Th
ro
ug
hp

ut
	(M

B/
s)

Data	size	(MB)

Throughput	of	sequential	load

1	node 2	nodes 4	nodes 8	nodes 16	nodes 32	nodes 32	nodes	(w/o	CC)

0

2000

4000

6000

8000

4 32 256 2048 16384 131072

Th
ro
ug
hp

ut
	(M

B/
s)

Data	size	(MB)

Throughput	of	random	load	(block	size=4	MB)

1	node 2	nodes 4	nodes 8	nodes 16	nodes 32	nodes 32	nodes	(w/o	CC)

Cache	replacement	policy
u LRU-based	policy
u Consists	of	pure	a	LRU	queue	and	a	FIFO	queue.

u The	size	of	the	FIFO	queue	is	half	of	the	cache	pool.
u The	size	of	the	LRU	queue	is	the	rest	of	the	cache	pool.

(1)	All	stored	caches	are	enqueued to	the	LRU	queue	firstly.
(2)	When	the	cache	pool	is	filled,	a	cache	is	dequeued from	LRU	queue.

(2-a)	If	any	other	nodes	have	the	same	cache	line,	the	cache	is	
evicted.
(2-b)	Otherwise,	the	cache	is	enqueued to	the	FIFO	queue.

(3)When	the	FIFO	queue	is	filled,	the	bottom	of	the	FIFO	queue	is	
dequeued and	evicted.

LRU FIFO

(1) (2-b) (3)

[5]	Endo	et	al.,	TSUBAME-KFC:	A	Modern	Liquid	Submersion	Cooling	Prototype	Towards	Exascale Becoming	the	Greenest	
Supercomputer	in	the	World,	in	Proc.	of	ICPADS	’14
[6]	Matsumiya and	Endo,	PGAS	Communication	Runtime	for	Extreme	Large	Data	Computation,	in	Proc.	of	ESPM2	’16
[7]	Endo,	Realizing	Out-of-Core	Stencil	Computations	using	Multi-Tier	Memory	Hierarchy	on	GPGPU	Clusters,	in	Proc.	of	Cluster	’16
[8]	Kim	et	al.,	Design	and	Implementation	of	Papyrus:	Parallel	Aggregate	Persistent	Storage,	in	Proc.	of	IPDPS	’17


