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ABSTRACT

Loop tiling is known as a technique that uses cache hier-
archy efficiently and improves performance since long ago.
As many-core processors become popular more and more
for parallel computing, tile sizes need to adjust more tech-
nically. To tackle with this situation, we develop an auto-
tuning tool for tile size optimization based on polyhedral
compilation, and implement our original heuristic method.
It iterates measurement of binary built with each tile size
under specific scheduling. We evaluate our method and two
existing heuristics known as general purpose methods. From
the result, we demonstrate that our method obtains good
tile sizes with shorter search steps and higher accuracy than
the other methods.

KEYWORDS

loop tiling, auto-tuning

1 INTRODUCTION

Loop tiling is a well-known technique to use cache hierarchy
efficiently. It divides loop iterations into smaller blocks and
adjusts their schedule. The number of the blocked loop it-
erations is called tile size, which is usually small. These tile
sizes need to be adjusted specifically for each system. If they
are proper sizes, loop tiling enhances data reuse and reduces
cache hit misses. As a result, performance becomes better
than the one without tiling. This loop tiling takes much time
and laborious effort if it is performed manually. To solve
this issue, an approach that automates it using polyhedral
compilers is becoming feasible. Inside a polyhedral compiler,
polyhedral model is used, which mathematically represents
loop conditions and shapes. We use Polly[1] as a polyhedral
compiler in this paper.

Recently, many-core processors are commonly used as an
attractive architecture in the HPC field. This time we adopt
Xeon Phi as a representative many-core processor. In that
case, tile size adjustment is not simple and easy. For example,
TurboTiling[3] which is a static calculation approach does
not consider about too many core processors, so that we
cannot apply simply the algorithm to such systems.

2 OUR AUTO-TUNING TOOL AND
SEARCH METHOD

We focus on the problem between adjusting tile sizes and

using many-core processors. A dynamic approach takes more

time than a static one, however higher accuracy. We develop
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an auto-tuting tool for loop tiling named PATT (Polyhedral
compilation based AuTo Tile size optimizer). It works like
a compiler driver, though it needs some user setting values
for tile size selection. This tool includes "I-PATT” method
which consists of our smart scheduling algorithm specific for
tile size adjustment.

I-PATT separates handling triply nested loop and doubly
nested one. The reason is that we have already known the
outer-most tile size is the most important for triply nested
loop because load balance is the dominant factor for per-
formance. I-PATT considers this at first, so fixes inner tile
sizes to 32 and iterates compilation and measurement some
times changing the outer-most tile size. When it finishes, I-
PATT starts to search the good sizes of inner tile on fixed
the outer-most tile size. At first the search space is wide and
coarse, and it gradually becomes short and fine. The search
for a space is based on hill climbing algorithm. There are two
reasons that we adopt this customized search: to reduce the
search time and to move over a space of similar performance.
From some preliminary experiments, this customized search
algorithm works well particularly for tile size adjustment.

3 THE EXISTING SEARCH METHODS

We prepare two other methods for comparison to our method,
which are a Simulated Annealing (SA) method and a Nelder-
Mead Simplex (NM) method. They are ported and imple-
mented from Orio[2] that is another auto-tuning tool for
general purpose into our tool.

SA is a method based on local search and takes a proba-
bilistically technique using a ” Temperature” idea. It iterates
testing and moving states reducing temperature gradually.
Even if the performance of the next state is worse than the
current one, SA moves the state probabilistically using tem-
perature value in order to get out from a local best. By the
way, in the case of tile size adjustment, search methods must
consider integer problem and multiple dimension. SA defines
”neighbor” as all indexes in the range of "neighbor distance”,
which is fixed 1. When SA moves a state, it picks up ran-
domly one of points in neighbor. Finally, when temperature
reduces enough, SA ends.

NM is a method based on a concept of moving a ”Sim-
plex”, which consists of N coordinates. N is the number of di-
mension +1. For example, a two-dimensional problem needs
three coordinates as a simplex. First, NM decides an initial
simplex and tests all coordinates in the one. Then, it changes
the simplex shape step by step using the following functions:
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Figure 1: Convergence speeed of gemm kernel
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Figure 2: Convergence speed of atax kernel

Table 1: Final results of each method

Search Method Tile Sizes Time %

Brute-Force 16, 1124, 12 2.89 100.0
I-PATT 16, 1192, 12 2.91 99.3
gemm | NM 16, 36, 48  3.36  86.0
SA (worst) 16, 28,44  3.50  82.6
SA (best) 16, 24,80 3.19  90.6
Brute-Force 8, 1940 2.50 100.0
I-PATT 8, 2096 253  98.8
atax | NM 8, 80 2.78 899
SA (worst) 36,36 4.60 54.3
SA (best) 8,64 2.84 88.0

Reflection, Expansion, Contraction, Shrink. As a result, the
simplex comes near to the best coordinates quickly in theory.

4 EVALUATION

We adopt Polybench[4] as a benchmark. Evaluation of ker-
nels in this benchmark has an affinity with Polly used in
PATT. We pick up gemm and atax kernels as representatives
using triply nested loop and doubly nested one, respectively.

Our environment for evaluation is the following. We use
Intel Xeon Phi Processor 7210 with 64 threads. Data size
is "LARGE” on Polybench. The initial coordinates of SA
and NM are ”all32”. This means all tile sizes is 32, which is
empirically known as a good parameter. We note that a few

user setting values of each method are optimized based on
the results of our preliminary experiments.

Figure 1 shows the comparison of each method on gemm
kernel. ”Search Steps” are the actual numbers of building
and measuring binaries. This figure indicates that NM is
reaches a fast state quickly, however stops early so it cannot
explore further into better state. SA’s convergence speed is
slower than other methods. I-PATT is usually the best speed
and accuracy. Figure 2 shows the same comparison on atax.
SA (worst) remains a bad state in the early step because
SA fits into a local optimum when the generated random
number sequence badly affects performance. NM is better
than SA, and I-PATT is the best. Table 1 shows final results
of each method. ”Brute-force” is an exhaustive experiment.
This table indicates that I-PATT reaches almost 99% of the
fastest performance while SA and NM remain at most 90%.

We consider there two reasons for the low accuracy of SA
and NM. First, the outer-most tile size is very sensitive for
performance than the other dimension tile sizes. A small data
size and a bunch of threads cause load imbalance, which is
the dominant factor for performance. Search method should
separate handling the outer-most loop tile size adjustment
and inner ones like I-PATT. Second, inner loop tile sizes are
usually insensitive for performance in wide neighbor ranges.
Thus, it is needed to perform a wide and coarse search at
first.

5 CONCLUSION

In this paper, we have focused on importance of loop tiling
optimization on many core processors. We have developed
an auto-tuning tool and implemented our original search al-
gorithm, I-PATT, which is specific for tile size adjustment.
We have evaluated I-PATT, SA and NM methods. From the
results, we have confirmed that I-PATT obtained the almost
best tile sizes successfully, and SA and NM also worked well
up to a certain performance.

We have found from this research that general purpose
auto-tuning methods like SA or NM have limits of conver-
gence speed and accuracy. It needs some specific techniques
for the problem of tile size adjustment on many core proces-
sors. Considering load balance and wide-and-coarse search
are important even if we use general purpose methods. As
a future work, we plan to improve I-PATT method to work
more generically for many other kernels.
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