
Loop Tiling is a technique that uses cache hierarchy efficiently

• It improves data locality of reference in nested loops. 
• Tile sizes need to be properly adjusted in order to acquire 

better performance
• Polyhedral compilers enable to automate the loop 

transformation

Evaluating Autotuning Heuristics for Loop Tiling
Tomoya Yuki¹, Yukinori Sato¹, Toshio Endo¹

¹Tokyo Institute of Technology

Background

Heuristics

Evaluation

for(ii=0; ii<IMAX; ii+=TI)
for(jj=0; jj<JMAX; jj+=TJ)
for(i=ii; i<min(ii+TI,IMAX); i++)
for(j=jj; j<min(jj+TJ,JMAX); j++)
t[i] += A[i][j] * x[j]

Schedule of i,j

for(i=0; i<IMAX; i++)
for(j=0; j<JMAX; j++)
t[i] += A[i][j] * x[j]

Tiling

...

...

...

...

...

...

i

j

Improve data locality of reference

Loop iteration space

proper tile size

We developed PATT to search proper tile sizes 
(Polyhedral compilation based AuTo Tile size optimizer)

• Using Polly [1] as a Polyhedral compiler
• Iterative building binary & measurement
• Implemented some heuristics

Motivation

• Investigate the best tile size parameters for performance
• Need to search from a huge parameter space
• FAST convergence speed and HIGH accuracy

• Many core processors such as XeonPhi (KNL) are becoming popular

PATT

Binary

Information for compile
Sorce codes, compile options

Setting file for PATT

Fastest tile sizes

(Python + Shellscript)

Necessary information

Time measurement data

Binary

Build a binary using Polly (clang, opt, llc)

Execute, measure the time

Iterative Search

End of search
Build a binary using fastest tile sizes

Target tile sizes

We have developed I-PATT heuristic which is a specialized one for tile size adjustment

• Load balance is important in the case of many core processors, which is the dominant factor for 
performance

• In the case of triply nested loops
• First, fix TJ and TK (inner loop tile sizes) and find fastest TI (outer most loop tile size)
• Then, search TJ and TK using the algorithm below

• In the case of doubly nested loops
• Search TI and TJ using the algorithm below

• 2-dimensional search algorithm: Starting from wide and coarse search space, it gradually focuses on 
a finer region → In order to be over flat heatmap region and fast convergence

• We adopted hill climbing technique to reduce search steps
Simulated Annealing (SA) is also one of well-known meta hauristics

• Using the concept of “Temperature”, which affects the probability below
• Selecting a random coordinate from neighbor 
• Comparing the results of measurement, 

probabilistically moving the new coordinate

Nelder-Mead Simplex (NM) is one of meta hauristics to find minimum

• Using the concept of “Simplex”, which consists of problem dimension +1 
coordinates (e.g. 2-dimension: 3 coordinates: means an triangle)

• Movivg a coordinate of a simplex, gradually reach the minimum

TI

1 2 3 4

5 6 7

8 9 10

In the case of triply nested loops
measure picked up TI (TI = 4, 8, 12, 16, ...)

[1] Tobias Grosser, Armin Groesslinger, and Christian Lengauer. 2012. Polly - Performing polyhedral optimizations on a low-level intermediate representation. Parallel Processing Letters 22, 04 (2012), 1-28.
[2] A. Hartono, B. Norris, and P. Sadayappan. 2009. Annotation-based empirical performance tuning using Orio. In 2009 IEEE International Symposium on Parallel Distributed Processing. 1-11.
[3] Tomofumi Yuki and Louis-No�el Pouchet. 2016. PolyBench. https://sourceforge.net/projects/polybench. (2016).

This work is supported by JST-CREST, “Software Technology that Deals with Deeper Memory Hierarchy in Post-petascale Era”

Heuristics Tile Sizes Time %
Brute-Force 16, 1124, 12 2.89 100.0
I-PATT 16, 1192, 12 2.91 99.3
NM 16, 36, 48 3.36 86.0
SA (worst) 16, 28, 44 3.50 82.6
SA (best) 16, 24, 80 3.19 90.6

Heuristics Tile Sizes Time %
Brute-Force 8, 1940 2.50 100.0
I-PATT 8, 2096 2.53 98.8
NM 8, 80 2.78 89.9
SA (worst) 36, 36 4.60 54.3
SA (best) 8, 64 2.84 88.0

• We use Polybench [3] as a benchmark suite, which is familiar with Polly
• This time we pick up gemm as a triply nested loop kernel and atax as a doubly one
• A few user setting values of each heuristics are optimized based on the result of our preliminary experiments

gemm atax

Heatmap that presents performance for each tile size (blue is fast)
gemm atax

A simplex
Measure all coordinates

New simplex

Expansion

Contraction

Reflection

Shrinkage

Select one from 4 methods

Select a random neighbor coordinate

Compare old one and new one
old < new : move to new one
old > new : probabilistically move

using temperature
Measure a coordinate

Iterate the same search
on the shrinked range 

Small techniques
• Inner-Margin: Exclude small tile size
• Alignment: Align to multiple of 4

Environment
Processor Xeon Phi Processor 7210
Num of threads 64
Problem size LARGE (Polybench)
Polly Optimization Tiling, Vectorization, Parallelization

AccuracyConvergence speed
gemm atax

Iterate until it converges sufficiently

How do we achieve?
Which heuristic is the best?

Iterate until it converges sufficiently

TJTJ

TI

Hill Climbing

Iterate until it converges sufficiently

“Brute-Force” is an exhaustive experiment
We can see that the tile sizes of I-PATT is nearby the one of Brute-Force

Ported from Orio [2]

Ported from Orio [2]

• I-PATT achieves FASETR convergence speed and HIGH accuracy
• NM shows fast convergence, but low accuracy
• SA shows slow convergence and low accuracy.  It is also sensitive to the random values that decide probabilistic behaviors (SA best vs. SA worst)
• I-PATT reaches almost 99% of the fastest performance of Brute-force while NM and SA remain at most 90% performance 

Reasons for the low accuracy of NM and SA
• First, the outer-most tile size tends to be sensitive for performance than the other dimensions.  However, NM and SA do not consider this within their search algorithms.
• Second, local search within neighboring inner loop tile size is less sensitive for performance. NM and SA lack wider and coarser search.


	スライド番号 1

