
The PomPP Framework: From Simple DSL
to Sophisticated Power Management for HPC Systems

Yasutaka Wada
Meisei University
Tokyo, Japan

yasutaka.wada@meisei-u.ac.jp

Yuan He
The University of Tokyo

Tokyo, Japan
he@hal.ipc.i.u-tokyo.ac.jp

Thang Cao
The University of Tokyo

Tokyo, Japan
cao@hal.ipc.i.u-tokyo.ac.jp

Masaaki Kondo
The University of Tokyo

Tokyo, Japan
kondo@hal.ipc.i.u-tokyo.ac.jp

ABSTRACT
E�ectively utilizing the limited power budget is one of the most
important issues when realizing HPC systems beyond petascale
performance and this remains a di�cult task from every possible
angle. On the end user’s perspective, optimizing the performance
and power consumption of HPC applications requires a good under-
standing of the system speci�cations in addition to the characteris-
tics of applications. For system administrators, they are required
to provide the system speci�cations and de�ne the interfaces to
monitor and tune certain components while keeping in mind both
stability and security of the system. In addition, automation of
such tasks is also very critical in terms of productivity. To tackle
these concerns, we propose and implement a simple framework
to carry out power management and performance optimization of
HPC systems.

KEYWORDS
HPC, Performance, Power, Optimization

1 INTRODUCTION
Numerous reports including the Exascale Study from DARPA [2]
and the Top Ten Exascale Research Challenges from DOE [7] have
identi�ed power consumption as the major constraint to further
scale the performance of HPC systems under existing designs. In
order to bridge the power/energy e�ciency gap, power manage-
ment is one of the most important approaches, allowing power to
be more e�ciently consumed and distributed.

Power management is a complex process involving the collection
and analysis of statistics from both hardware and software, power
allocation with available performance and power-knobs, code in-
strumentation/optimization and so on. For large scale systems, it
gets more complex since handling these tasks under the pressure
of scalability and size is not easy. So far, for large scale systems,
these tasks are mostly carried out in a discrete and manual manner
for speci�c hardware and software. Therefore, many problems and
limitations arise:

• how to apply power management/optimization method in a
short time

• how to utilize existing power management tools
• how to adjust the power optimization for various systems

To address some of these problems, e�orts like GeoPM and Pow-
erAPI are developed [3, 4]. However, GeoPM is more user-centric
while PowerAPI is too abstract that it still requires further e�ort for
production use. Hence, we design and implement a versatile power
management framework targeting at power constrained large scale
HPC systems. Our objective is to provide a standard utility to peo-
ple of di�erent roles when managing/using such systems. Through
this framework, we provide the following contributions:

• an extensible hardware/software interface to existing/future
power-knobs and tools

• security within the system can be guaranteed with clearly
de�ned roles for users and administrators

• a front-end to many utilities and tools in the framework is
provided through a simple domain-speci�c language (DSL)
included in this framework

These enable users to create, automate, port and re-use power
management solutions.

2 THE PROPOSED
POWER MANAGEMENT FRAMEWORK

In the proposed framework, we assume an HPC system with its
hierarchical structure. As a total system, it consists of multiple com-
puting nodes, interconnect connecting the nodes, and the storage
subsystem shared among nodes. Each node consists of multiple
processors, DRAM modules, and accelerators like GPUs. Each pro-
cessor has one ore more cores. Each component in this system can
be a power-knob, but its availability to the users depends on the
capability of the hardware and control permission speci�ed by the
system administrator.

2.1 Framework Overview
To apply power-performance optimization and power management
to an HPC application, our framework has been designed to support
the following functionalities:

• Specifying the target machine con�gurations
• Calibrating hardware power consumption
• Measuring and controlling application power consumption
• Analyzing and instrumenting source code
• Optimizing application under speci�ed power budget and/or
performance-power models



HPC Asia 2018, January 2018, Tokyo, Japan Y. Wada, Y. He, T. Cao, and M. Kondo

DSL Interpreter

Calibration Data

Hardware 
Calibration

Scripts

Profiling
Data

Application 
Profiling
Scripts

Optimized
Execution

Scripts

Power-Performance
Optimized Run

Profiling
Run

Optimization
Models

Auto/Manual
Instrumentation

DSL Source
User

Application
Source

Application
with

Power-Knob Control

Figure 1: The Overview of the Performance and Power Opti-
mization Framework

These functionalities are supported through certain performance
and power tuning libraries to access power-knobs such as RAPL[6]
and cpufrequtils, and instrumentation tools implemented based on
TAU and PDT [5, 10–12]. In order tomake the frameworkwith these
libraries/tools more user-friendly and productive, we developed a
simple DSL as the front-end of this framework.

Figure 1 shows the overview of the proposed framework. The
framework requires two sets of input, the DSL source and the user
application source code. Based on them, our framework provides
power-performance optimizations for the application. Meanwhile,
the administrators and users can be free from the e�ort to under-
stand the details of optimization work�ow. Once the DSL source
codes are prepared, the proposed toolchain provides easy way to
realize optimized execution of user applications.

2.2 Machine Speci�cation and Setting
The �rst main feature of this framework is to help the system ad-
ministrators set/modify the con�gurations of various HPC systems.
Through the DSL source, the administrator can provide the system
con�guration and available power-knobs to the framework. Users
of the system should have the permission to access the power-knobs
as if they are allowed by the administrator.

2.3 Hardware Calibration
Precise power-performance control is required to realize overprovi-
sionedHPC system because power budget is usually tight constraint
for safe operation of the system. Also, As Inadomi et al. mentioned,
because of manufacturing variations, each component in the sys-
tem has its own characteristics even when we compare the same
products [5].

Therefore, the proposed framework provides scripts for hard-
ware calibration based on information given by the administrators.
The scripts run some microbenchmarks and collect the power-
performance relationship information for each component. With
this information and the pro�ling data of the user applications, our

Listing 1: DSL Code Snippets for System Con�guration
1 CREATE MACHINE M
2 ADD M POMPP_NPKGS_PER_NODE 2
3 ADD M POMPP_NCORES_PER_PKG 12
4 ADD M POMPP_TOTAL_NODES 965
5 ADD M POMPP_MAX_FREQ 16
6 ADD M POMPP_MIN_FREQ 12
7 ADD M POMPP_PKG_TDP 130.0
8 ADD M POMPP_DRAM_TDP 62.0
9 ADD M POMPP_PKG_MIN 64.0
10 ADD M POMPP_DRAM_MIN 30.0
11 ADD M POMPP_MODULE_MIN 46.0
12 SWITCH M

framework decides how much power budget should be allocated
with each power-knob.

2.4 Applications Instrumentation
and Power-Performance Optimization

To realize power-performance pro�ling and optimized execution of
a user application, the application is required to be instrumented
with API call to get pro�ling data and to control power-knobs. In
this toolchain, it is assumed that PDT based instrumentation tool
[5, 10–12] is used for automatic instrumentation.

In the current implementation of the framework, we assume to
statically decide power-capping and power distribution in advance.
For this optimization, the user is asked to run at least two scripts
generated by the DSL. The �rst one is the script to generate power-
performance pro�ling data for the application, and the second one
is the script for optimized application run. Power-performance pro-
�ling data generated by the �rst one is used to generate power-knob
settings for optimized execution under the given power budget. It is
also assumed that these scripts or program are prepared by the sys-
tem administrator in advance to decide which power-knobs to be
opened for user applications and what kind of power-performance
models are desirable.

2.5 Simple DSL as a Front-End
As a front-end to our framework, we have developed a simple DSL
to provide a uniform gateway to tools and utilities in the framework.
It helps to create, reuse, and extend power management/optimiza-
tion algorithms and processes. Then, once the code written in this
DSL is given, automation is possible which dramatically improves
productivity. interpreter is developed based on ANTLR v4 [1, 9]
with very simple semantics.

Source code written in our DSL is composed of a basic element
which is called the “statement”. A statement has two or three parts
including a command, a type (if an object/attribute is not de�ned
yet) and an object/attribute name. For example, Listing 1, Listing
2 and Listing 3 illustrate statements manipulating objects de�ned
in this DSL. Listing 1 shows how system con�guration is set and
Listing 2 shows how to use an application as the microbench to
calibrate the hardware. Listing 3 is about how a regular job is
submitted with a module power cap of 70W.



The PomPP Framework HPC Asia 2018, January 2018, Tokyo, Japan

Listing 2: DSL Code Snippets for Hardware Calibration
1 CREATE JOB EP_C
2 ADD EP_C EXEC_PATH <absolute path to the

executable >
3 ADD EP_C JOB_TYPE CALIBRATION
4 ADD EP_C PVT_PATH <absolute path to the

power variation table >
5 SUBMIT EP_C

Listing 3: DSL Code Snippets to Submit a Jobwith a Speci�ed
Power Cap
1 CREATE JOB EP_G
2 ADD EP_G EXEC_PATH <absolute path to the

executable >
3 ADD EP_G JOB_TYPE GENERAL
4 ADD EP_G MODULE_POWER 70
5 ADD EP_G CONTROL_MODE RAPL
6 SUBMIT EP_G

Table 1: Evaluation Environment

Number of Nodes 16
Processor Intel Xeon E5-2680 (8 cores)

2 sockets per node
Memory Size 128GB per node
Interconnect In�niband FDR
OS RHEL with kernel 2.6.32
Compiler FUJITSU

Software Technical Computing Suite
MPI Open MPI 1.6.3

3 EVALUATIONWITH A CASE STUDY
In this section, we provide a case study to demonstrate some of the
functionalities of our framework.

3.1 Evaluation Settings
The case study is programmed with the DSL at �rst and then inter-
preted on a gateway node of an HPC system with its speci�cations
shown in Table 1.

In this evaluation, we employed RAPL interface as the avail-
able power-knob, and considered only CPU power to be controlled
through RAPL under the assumption that DRAM power consump-
tion has strong correlations with CPU performance and power. We
used two applications (EP and IS with Class D dataset) from the
NPB benchmark suite [8] to carry out these case studies. To un-
derstand their performance and power characteristics, pro�ling is
necessary and the results are shown in Figure 2 with an interval of
100ms. The pro�ling processes are also speci�ed with our DSL.

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Po
w

er
 C

on
su

m
pt

io
n 

(W
)

Time (Sec)

EP IS

Figure 2: Power Pro�les of EP and IS

0.9

1.3

1.7

2.1

2.5

2.9

3.3

3.7

0 20 40 60 80 100 120

Re
la

tiv
e 

Ru
nt

im
e

Power Consumption (W/Socket)

EP IS

Figure 3: The Linear Power-Performance Models for EP and
IS

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Po
w

er
 C

on
su

m
pt

io
n 

(W
)

Time (Sec)

EP IS

Power Cap for IS 
(34W/Socket)

Power Cap for EP 
(59W/Socket)

Figure 4: Power Performance Optimization Results (within
a Slowdown of 2)

3.2 Case Study: Power Cap to Satisfy A
User-De�ned Deadline for the Application

In this case study, a linear performance/power model of the applica-
tion is constructed through pro�ling and how we use this model to
derive the power cap according to user’s performance demand for
the application. In addition to the power pro�les shown in Figure
2, four extra rounds of pro�ling are required for this case study to
construct the linear performance/power model for each application
shown in Figure 3.



HPC Asia 2018, January 2018, Tokyo, Japan Y. Wada, Y. He, T. Cao, and M. Kondo

Using the models shown in Figure 3, performance demand can
be set from the users when they submit their jobs through the DSL
code. For example, if the user allows the runtime to be doubled, the
corresponding power caps can be found from these two models as
59W and 34W for EP and IS, respectively.

Figure 4 presents the power pro�les of the two applications
under power caps obtained from the models to allow the elapsed
time to be shorter than twice the runtime under the peak power
demand. Though the slowdown for each application is less than
two (1.20x and 1.53x, respectively) because of the model accuracy,
user’s performance demand is satis�ed and allocated power are
dramatically cut.

4 CONCLUSIONS
We have demonstrated a power management framework for power-
constrained HPC systems to tackle the problem of power limitation.
With this framework, HPC system administrators can easily specify
and calibrate their system hardware. Meanwhile, it is also helpful
for tasks such as how the user applications should be tuned to
maximize the performance or to cut the power demand.

In the case study, we apply power management to two applica-
tions and show how a simple power model with linear relationship
between the CPU performance and power consumption can be
constructed and used to derive the power cap. Our framework can
provide the users an easy way to apply power optimization and
management to their applications.

In our future work, we plan to improve it with more functionali-
ties such as cooperation with system software, job schedulers and
other external tools to enrich its functionalities.

ACKNOWLEDGMENTS
Thiswork is supported by the Japan Science and TechnologyAgency
(JST) CREST program for the research project named Power Man-
agement Framework for Post-Petascale Supercomputers. We are
also grateful to the Research Institute for Information Technology of
Kyushu University for providing us the resources and to all project
members for their valuable comments.

REFERENCES
[1] ANTLR. [n. d.]. http://www.antlr.org/. ([n. d.]).
[2] Keren Bergman et al. 2008. ExaScale Computing Study: Technology Challenges

in Achieving Exascale Systems. (2008).
[3] GeoPM. [n. d.]. https://github.com/geopm. ([n. d.]).
[4] James H. Laros III, David DeBonis, Ryan Grant, Suzanne M. Kelly, Michael Leven-

hagen, Stephen Olivier, and Kevin Pedretti. 2016. High Performance Computing -
Power Application Programming Interface Speci�cation Version 1.3. (May 2016).

[5] Yuichi Inadomi, Tapasya Patki, Koji Inoue, Mutsumi Aoyagi, Barry Rountree,
Martin Schulz, David K. Lowenthal, Yasutaka Wada, Keiichiro Fukazawa, Masat-
sugu Ueda, Masaaki Kondo, and Ikuo Miyoshi. 2015. Analyzing and Mitigating
the Impact of Manufacturing Variability in Power-constrained Supercomputing.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC15). 78:1–78:12.

[6] Intel Corporation. 2016. Intel® 64 and IA-32 Architectures Software Developer’s
Manual. (September 2016).

[7] Robert Lucas et al. 2014. Top Ten Exascale Research Challenges. (2014).
[8] NAS parallel benchmarks 3.3. [n. d.]. http://www.nas.nasa.gov/. ([n. d.]).
[9] Terence Parr. 2013. The De�nitive ANTLR 4 Reference (Second Edition). Pragmatic

Bookshelf.
[10] PDT. [n. d.]. https://www.cs.uoregon.edu/research/pdt/home.php. ([n. d.]).
[11] PomPP Library and Tools. [n. d.]. https://github.com/pompp/pompp_tools. ([n.

d.]).
[12] TAU. [n. d.]. https://www.cs.uoregon.edu/research/tau/home.php. ([n. d.]).

http://www.antlr.org/
https://github.com/geopm
http://www.nas.nasa.gov/
https://www.cs.uoregon.edu/research/pdt/home.php
https://github.com/pompp/pompp_tools
https://www.cs.uoregon.edu/research/tau/home.php

	Abstract
	1 Introduction
	2 The ProposedPower Management Framework
	2.1 Framework Overview
	2.2 Machine Specification and Setting
	2.3 Hardware Calibration
	2.4 Applications Instrumentationand Power-Performance Optimization
	2.5 Simple DSL as a Front-End

	3 Evaluation with a Case Study
	3.1 Evaluation Settings
	3.2 Case Study: Power Cap to Satisfy A User-Defined Deadline for the Application

	4 Conclusions
	Acknowledgments
	References

