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ABSTRACT

We propose a library for parallelizing generic search-based
optimization processes. We also propose a benchmark opti-
mization problem for our library. Two experimental results
are reported about the promising performance of the library.
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1 INTRODUCTION

Optimization problems consist of sets of variables and con-
straints and an objective function; we aim to obtain an assign-
ment to the variables that minimizes the value of the objective
function, at the same time satisfying the constraints. Various
practical problems are translated to optimization problems
and solved. To solve large and complex instances by a search
technique, parallelizing optimizers to run efficiently on PC
clusters is a promising approach [1, 3]. However, most exist-
ing methods more or less assume a centralized structure and
their scalability on massive PC clusters is limited.

This research aims to provide a decentralized paralleliza-
tion scheme for generic optimization problems that are solved
with search. For this purpose, we propose a library for par-
allelizing various search-based optimization processes. Our
library extends the X10 GLB library (Section 2) for paral-
lel and distributed search computation (Section 3), which
is processed by a group of homogeneous workers those not
assuming a centralized topology. To analyze the character-
istics of the library, we design an optimization benchmark
(Section 4). We have experimented to solve several instances
of the benchmark using the extended GLB library on up to
504 cores of a supercomputer; some promising results are
reported in Section 5.

2 X10 GLB LIBRARY

X10 (http://x10-lang.org/) is a productive programming
language for HPC. GLB (Global Load Balancing)[4] is a
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standard library of X10 that provides load balancing and ter-
mination mechanisms for cooperative parallel workers whose
workloads are not predictable. Each worker typically runs on
a CPU core and homogeneously processes a divided portion of
the whole workload. Load balancing between workers is done
in two steps: first, a starving worker sends a request to other
workers either randomly chosen or connected via a network
of workers (so-called lifeline); second, loaded workers will
respond by sending a portion of its workload. Termination is
also detected by a communication via the lifeline.

3 EXTENDED GLB FOR
OPTIMIZATION PROBLEMS

GLB is appropriate to a search procedure for solving con-
straint satisfaction problems [2]. In an optimization problem,
an objective function is given and evaluated while enumer-
ating feasible solutions. In a parallel setting, it is essential
to share a tentative optimal assignment among the parallel
tasks; with this information, a task may abandon its workload
when nonexistence of an optimal value is obvious.

In this work, we extend GLB to enable sharing a tentative
information among workers. When a worker finds a local
optimum, it notifies the value to other workers each time a
certain amount of sequential computation is done. To settle
a trade-off between the distribution speed and the communi-
cation cost, the notification is sent to n randomly selected
workers.

4 OPTIMIZATION BENCHMARK

To evaluate the performance of the extended GLB library,
we design a benchmark problem. The problem is intended to
be easy to configure the size and the degree of parallelism
of its search space; the possibility of search space pruning is
also designed to be configurable.

The designed problem is based on a perfect b-ary tree
whose nodes are weighted with integers; the objective is to
find a path with a smallest sum weight. An instance of the
problem is represented with three integers b, d, and h, which
represent the degree of branching, the depth of the tree, and
the seed for random weight generation, respectively. Tree
nodes are randomly weighted with integers 0–255.

As a generalization of the problem, we can consider a prob-
lem to rank the top k feasible solutions with better weights.
The higher the k, the more chances to have a tentative opti-
mum, i.e., an updated ranking, and a parallel solving requires
an efficient distribution process.
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4.1 Implementation

We have implemented a benchmark solver with the extended
X10 GLB that searches along with a given tree in a depth-first
fashion while generating the weight each time a new node
is traversed. Subtrees of the search tree are separated and
distributed among GLB workers. When a worker reaches a
leaf and the sum weight is optimum, this value is notified to
other workers using our extension to GLB.

The TaskQueue interface is implemented as follows:

• The process() method of GLB’s TaskQueue interface
implements a unit of the solving process. TaskQueue
maintains a stack of the tree nodes to be searched. First,
process() pops a node, expands a child of the node,
and computes its weight. Next, the current search may
terminate as a result of comparison between the sum
weight and the tentative optimum. Finally, process()
updates the optimum if the node is a leaf, or otherwise
pushes the node in the stack.

• The split() and merge() methods of the TaskQueue

implement the process of load balancing. In response
to a starving worker, a sender provides a half of the
content of the stack of tree nodes, which is returned
by split(); then, merge() of a receiver appends them
to its stack.

5 EXPERIMENTAL RESULTS

We ran two experiments to solve the benchmark problem
with the GLB-based solver on a supercomputer. We used up
to 14 nodes where each node has two Xeon 2.1GHz processors
(18× 2 cores, max. 504 cores in total) and 128GB RAM. For
X10 compilation, we used the C++ native compiler version
2.5.4 with MPI back-end.

5.1 First Experiment

We evaluated the efficiency of the parallel solver using up
to 288 cores when various instances were given. Instances
for every combination of (b, d) ∈ {(6, 30), (8, 26)} and h ∈
{0, 3, 15, 35} were prepared and the topmost (k = 1) or
top ten (k = 10) feasible solutions were computed. In this
experiment, tentative optima were broadcasted.

Measured speedups for the instances are illustrated in
Figures 1(a) and 1(b). Each line represents the average for
the instances with different hashes h. The averages and ranges
of sequential execution timings are shown in Table 1. Despite
broadcasting the optima, we had monotonic speedups for
all the runs. We observed that the range of the speedups
for each instance group was reasonably small as we had
expected in the benchmark design. The benchmark will help
further development of the GLB library e.g. by controlling
the number of feasible solutions by changing the values of b
and k, while restricting the effect of search space pruning.

5.2 Second Experiment

We checked that the distribution of tentative optima with
random sending improves the performance when the com-
munication cost is a bottleneck. We solved the instances in
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(a) Speedups for the instances where b = 6, d = 30, and k = 1
(blue plain line) or k = 10 (red dotted line).
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(b) Speedups for the instances where b = 8, d = 26, and k = 1
(blue plain line) or k = 10 (red dotted line).

Figure 1: First experimental results.

Table 1: Execution timings.

(b, d) k ave. time time range

(6, 30)
1 840s 496–1460s
10 1185s 702–1970s

(8, 26)
1 440s 353–511s
10 585s 502–643s

the first experiment using up to 504 cores. Two distribu-
tion methods, which send an optimum to either all other
workers (i.e. broadcasting) or randomly selected 1–2 workers
(i.e. random sending), were used. The speedups are shown in
Figures 2(a) and 2(b). We confirmed that random sending
improves the distribution efficiency for both instances.

6 CONCLUSION

This paper has reported preliminary but promising results
for parallelizing search-based optimization processes. Future
research will explore improvements of the distribution process,
e.g., based on a hierarchical network of workers.
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(a) Speedups for the instances where b = 6, d = 30, and
k = 10.
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(b) Speedups for the instances where b = 8, d = 26, and
k = 10.

Figure 2: Second experimental results. Tentative op-
tima were either broadcasted (blue solid lines), sent
to a randomly selected worker (red dashed lines), or
sent to two randomly selected workers (black dotted
lines).
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