
Auto-tuning of Hyperparameters of Machine Learning Models
Zhen Wang

Tohoku University
Sendai, Miyagi, Japan

wangzhen@dc.tohoku.ac.jp

Ryusuke Egawa
Tohoku University

Sendai, Miyagi, Japan
egawa@tohoku.ac.jp

Reiji Suda
The University of Tokyo

Tokyo, Japan
reiji@is.s.u-tokyo.ac.jp

Hiroyuki Takizawa
Tohoku University

Sendai, Miyagi, Japan
takizawa@tohoku.ac.jp

ABSTRACT
Most machine learning models use hyperparameters empirically
dened in advance of their training processes. Even a classic ma-
chine learning model, so-called multilayer perceptrons, has a lot
of hyperparameters. In the case of using such a model for a classi-
cation problem, one diculty is that the achieved classication
accuracy could drastically change every time even if the same hy-
perparameter values are used. Hence, it is challenging to determine
an appropriate hyperparameter conguration at a low cost. The
same problem has so far been discussed in the research eld of
software performance automatic tuning, or auto-tuning. Therefore,
in this work, we employ one of such auto-tuning mechanisms, AT-
MathCoreLib, for auto-tuning hyperparameters of machine learning
models, and discuss the feasibility of using such technologies in
the eld of machine learning.

KEYWORDS
Machine Learning, Hyperparameter, Auto-tuning

1 INTRODUCTION
Recently, machine learning has been widely used for various real-
world problems, such as image recognition problems[1], whose
solutions cannot easily be described as clear algorithms. One of
popular machine learning algorithms is called a multilayer percep-
tron (MLP), which is a multi-layered network of neurons, as shown
in Figure 1. Once a network conguration is given, the MLP can
adjust parameters of the network, such as weight in each neuron,
and the parameter adjustment is called a model training process.
During the model training process, a lot of pairs of input and output
data, called training data, are presented to the MLP. Then, all pa-
rameters of the MLP are adjusted so that the input-output relation
of the MLP approaches that of training data. Therefore, without
dening an explicit algorithm, the MLP can build any input-output
relation from a lot of training data and solve a given problem.

One practical problem in using the MLP is that all hyperparame-
ter values must be dened in advance of the model training process,
as shown in Figure 2, and there is no established way of properly
determining those hyperparameters. Representative examples of
hyperparameters are related to the network conguration, such as

HPC Asia, January 2018, Tokyo, Japan
.

Figure 1: A Multilayer Perceptron

Figure 2: Hyper-parameters Tuning VS Model Training in
the MLP

the number of hidden layers and the number of neurons in each hid-
den layer. Currently, in practical use, hyperparameters are manually
determined in a try-and-error fashion. However, hyperparameters’
tuning of learning algorithms is a manual and time-consuming
process[3]. Therefore, this work focuses on automation of nding
appropriate values of hyperparameters.

There are three common approaches to nd good values of hy-
perparameters. The rst approach is called full search. In full search,
a hyperparameter space is discretized, and an MLP model is trained
and assessed for all combinations of the values over the space.
Although this method will lead to the best hyperparameter congu-
ration, it is too costly because the cost grows exponentially with the
number of hyperparameters. The second approach is to train and
assess many candidate models, each of which is built with a random
combination of hyperparameter values. The eciency of this ap-
proach strongly depends on how to decide random combinations of
hyperparameter values. The third approach, Latin hypercube sam-
pling, is similar to the random search method but more structured.
In Latin hypercube sampling, candidate values are sampled exactly
uniform across each hyperparameter but randomly combined. Even
though this method can ensure that sampling candidate values are
approximately equidistant from one another, we have to decide
heuristically the range of sampling values.



HPC Asia, January 2018, Tokyo, Japan Z. Wang etal.

Even if a supercomputer or a high-performance computing (HPC)
system is available, the rst approach, full search of a hyperparame-
ter space, is too time-consuming, and does not endwithin a practical
time, while the second and the third ones not always can nd the
best values for hyperparameters and need some heuristic decision.

Furthermore, some optimization methods, such as Bayesian
optimization[4], have been proved that they can nd better hy-
perparameters signicantly faster than a human expert. However,
this process is not automated and the users still need some knowl-
edge about Bayesian optimization before they utilize this method.
Hence, this work focuses on the Bayesian optimization, and au-
tomates the hyperparameter setting. Specically, an auto-tuning
mechanism called ATMathCoreLib is employed for the automation,
and the future direction of this work are discussed.

2 PROBLEM DEFINITION
All hyperparameters such as the number of neurons in each hidden
layer need to be determined in advance of training an MLP model.
However, there is no systematic way of nding appropriate values of
hyperparameters to train an MLP model for a given problem. Thus,
those hyperparameters are empirically determined, e.g., by human
experts. A problem tackled in this work is that it is time-consuming
to assess the performance of a model with a given conguration of
hyperparameters. Although a large-scale HPC system can assess
a lot of hyperparameter congurations in parallel, the assessment
itself is too time-consuming for assessing all possible combinations
of hyperparameter values. Therefore, this work explores an eective
way to intelligently search a hyperparameter space in addition to
parallel parameter search assuming a large-scale HPC system. The
goal of this work is to nd a better hyperparameter conguration
automatically within a shorter time.

3 PROPOSED APPROACH
ATMathCoreLib[5] is an auto-tuning mechanism originally devel-
oped for improving the performance of a program by adjusting
its parameters aecting the execution time. To be more specic,
it can tell which parameter to choose for next experiment using
the previous experiment information. ATMathCoreLib can adjust
a lot of parameters based on the Bayesian optimization under the
situation where the performance of a model dened by the param-
eters has an uncertainty, i.e., the observed performance may have
some perturbations. This diculty is exactly the same as that in
the hyperparameter search in machine learning. However, in this
work, ATMathCoreLib is employed for the auto-tuning of hyperpa-
rameters so as to maximize the performance of a machine learning
model.

There are two auto-tuning modes in ATMathCoreLib: oine
auto-tuningmode and online auto-tuningmode. Oine auto-tuning
mode is a two-phase method. In the rst phase, many trials are
executed with the sample data in order to search for the parameters
with best model performance. In the second phase, the chosen
parameters are used for practical executions. On the other hand,
in the online auto-tuning method, no trial execution is performed
and the candidate values of parameters are evaluated directly in
the practical executions.

Figure 3: The accuracy of the trained model

In machine learning, the tuning process of hyperparameters is
dierent from the model training process; the former one should be
nished before the later one. Moreover, since the performance of a
machine learning model has some perturbations, we need to assess
the performance of a certain parameter conguration N times (N
trials) to obtain the average performance. Thus, if there are M
parameter congurations, one simple way is to repeat training and
assessing a model N ×M times, i.e., N ×M trials, to decide the best
parameter conguration in terms of the average performance. On
the other hand, ATMathCoreLib uses a linear statistical model to
decide an appropriate parameter conguration in a statistically-
reliable way with fewer trials.

Thus, in this work, we employ ATMathCoreLib with oine auto-
tuning mode for auto-tuning hyperparameters of machine learning
models, and discuss the feasibility of using such technologies in
the eld of machine learning.

4 EVALUATIONS
In this work, auto-tuning of hyperparameters using ATMathCore-
Lib is preliminarily evaluated to show the importance of intelligent
hyperparameter search and feasibility of the proposed method. A
well-known data set of handwritten digits, called the MNIST2 data
set, is used as the training data set given for an MLP model. The
MNIST data set consists of 60,000 examples for training, and 10,000
examples for testing, and Tensorow[6] is used for training an MLP
model. The execution is evaluated using a PC of Intel Core i7-3770
CPU of eight cores running at 3.4 GHz.

In the preliminary evaluation, an MLP model has two hidden
layers, and the number of neurons in each hidden layer is adjusted
using ATMathCoreLib. That is, the number of hyperparameters
adjusted in the evaluation is two. ATMathCoreLib is used with the
oine mode with no user model, where ATMathCoreLib automat-
ically constructs a simple model with mean and variance for the
performance of the hyperparameters. All parameters, not hyperpa-
rameters, are iteratively adjusted during the training process. The
number of neurons in each hidden layer is an important hyperpa-
rameter that aects the performance of the trained MLP model in
terms of classication accuracy.

A pair of training a model with a certain hyperparameter cong-
uration and assessing its classication accuracy is called an experi-
ment, and a unique ID is given to each experiment and hyperparam-
eter conguration. Figure 3 shows that the classication accuracy
changes by repeating the experiment. It changes signicantly until
the 100-th experiment. However, after that, it just uctuates slightly



Auto-tuning of Hyperparameters of Machine Learning Models HPC Asia, January 2018, Tokyo, Japan

Figure 4: The hyperparameter conguration distribution

near the best classication accuracy. These results show that, after
a small number of running trials, only the hyperparameter congu-
rations with higher classication accuracies will be run until the
best one can be found with the proposed method.

Figure 4 shows the relationship between the conguration ID
and the observed classication accuracy. The classication accuracy
obviously changes whenever an MLP model is trained even with ex-
actly the same hyperparameter conguration. Therefore, the MLP
model should be trained multiple times to determine appropriate
values of hyperparameters in terms of the average classication
accuracy. Thus, hyperparameter congurations with high classi-
cation accuracies are tested more times than the others. As a result,
in a statistically reliable way, the proposed approach can select an
appropriate hyperparameter conguration indicated by the red line
in the gure. Moreover, the results also indicate that the number of
appropriate hyperparameter congurations is limited, and hence
conventional full search and random search approaches to nding
an appropriate hyperparameter conguration are inecient and
time-consuming.

Figures 3 and 4 indicate that only promising parameter con-
gurations are repeatedly tested to make sure which is the best
one. That is, ATMathCoreLib can eciently nd an appropriate
parameter conguration. Accordingly, it is concluded that a smart
hyperparameter search method such as the method implemented in
ATMathCoreLib is necessary to achieve ecient hyperparameter
search.

5 CONCLUSION AND FUTUREWORK
In this work, we have used one of auto-tuning mechanism, ATMath-
CoreLib, for auto-tuning hyperparameters of a simple MLP model.
The preliminary evaluation results show that auto-tuning technolo-
gies developed in the HPC eld are also eective to intelligently
adjust the hyperparameters of machine learning models.

In our future work, we will use more advanced machine learning
models, such as convolution neural network, with larger hyper-
parameter spaces, and discuss the eectiveness of auto-tuning in
more practical situations.

REFERENCES
[1] Alex Krizhevsky, Ilya Sutskever, and Georey E Hinton. 2012. Imagenet classica-

tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[2] Cortes Corinna LeCun Yann. 2017. The MNIST Database of Handwritten Digits.
(2017). http://yann.lecun.com/exdb/mnist/

[3] Dougal Maclaurin, David Duvenaud, and Ryan Adams. 2015. Gradient-based hy-
perparameter optimization through reversible learning. In International Conference

on Machine Learning. 2113–2122.
[4] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian

optimization of machine learning algorithms. In Advances in neural information
processing systems. 2951–2959.

[5] Reiji Suda. 2011. A Bayesian method of online automatic tuning. In Software
Automatic Tuning. Springer, 275–293.

[6] Tensorow. 2017. An open-source software library for Machine Intelligence. (2017).
https://www.tensorow.org/

http://yann.lecun.com/exdb/mnist/
https://www.tensorflow.org/

	Abstract
	1 Introduction
	2 PROBLEM DEFINITION
	3 PROPOSED APPROACH
	4 EVALUATIONS
	5 CONCLUSION AND FUTURE WORK
	References

