
Thermal-aware Dynamic Checkpoint Interval Tuning for High
Performance Computing

Extended Abstract

Pei Li
Grad. School of Information Sciences,

Tohoku University
lipei@sc.cc.tohoku.ac.jp

Mulya Agung
Grad. School of Information Sciences,

Tohoku University
agung@sc.cc.tohoku.ac.jp

Muhammad Alfian Amrizal
Cyberscience Center, Tohoku

University
alfian@sc.cc.tohoku.ac.jp

Ryusuke Egawa
Cyberscience Center, Tohoku

University
egawa@tohoku.ac.jp

Hiroyuki Takizawa
Cyberscience Center, Tohoku

University
takizawa@tohoku.ac.jp

ABSTRACT
Checkpointing with a fixed checkpoint interval, a so-called con-
stant checkpointing method, is commonly used in the field of fault-
tolerance for high-performance computing (HPC) systems. It can
achieve minimum total execution time if the failure follows an
exponential distribution. Related work show that there is a high
correlation between temperature and reliability. By analyzing the
results of the CPU temperatures monitoring on several applications,
we noticed that the change of the failure rate does not follow an
exponential distribution. In this paper, a dynamic checkpoint inter-
val adjustment method based on CPU temperature monitoring is
proposed. It can minimize the execution time since the checkpoint
interval is adaptive to the change of the failure rates. The method
predicts the change of the failure rate by utilizing a low-overhead
prediction method. The simulation results show that the method
can achieve a shorter execution time compared to the constant
checkpointing method.

ACM Reference Format:
Pei Li, Mulya Agung, Muhammad Alfian Amrizal, Ryusuke Egawa, and Hi-
royuki Takizawa. 2018. Thermal-aware Dynamic Checkpoint Interval Tun-
ing for High Performance Computing: Extended Abstract. In Proceedings
of International Conference on High Performance Computing in Asia-Pacific
Region (HPC Asia 2018). ACM, New York, NY, USA, 4 pages. https://doi.org/
10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The scale of high-performance computing (HPC) systems is getting
larger every year to cope with the continuous growth of compu-
tational demands. For example, the world fastest supercomputer,
TaihuLight, consists of more than 10 million cores with a peak
performance of 125 PFlop/s [10]. In addition, applications executed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HPC Asia 2018, January 2018, Tokyo, Japan
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Temperaturemonitoring results (left) and shape of
the failure distribution’s cumulative distribution function
(right) of the CG benchmark

on HPC systems generally have a long execution time, and thus
they have a high probability of encountering failures during their
run time. Without a fault-tolerance mechanism, such applications
cannot finish their computation because they have to restart from
the beginning of the execution whenever a failure strikes.

The most widely-used fault-tolerance mechanism in HPC sys-
tems is coordinated checkpointing [1]. Coordinated checkpointing
suspends application’s execution, stores all the necessary data to
a reliable storage, and then resumes the execution. The necessary
data are stored as a checkpoint file. If a failure occurs, the execu-
tion can be recovered by restarting the application from the latest
checkpoint instead of executing it again from the beginning. These
checkpoints are usually taken periodically with a certain fixed in-
terval, which is carefully selected so that the total execution time
of the application is minimal.

Numerous efforts have been made to optimize the checkpoint
interval in terms of execution time. Young proposed a first order ap-
proximation of the optimal checkpointing interval (OCI) [16]. Daly
derived a high order estimation of the OCI [2]. Nevertheless, most
of these works assume that failures are exponentially distributed
with a constant failure rate, λ. By using this assumption, the OCI
can be calculated conveniently. This OCI is then used constantly
throughout the execution of the application. The mechanism that
uses such a constant checkpointing interval is called the constant
checkpointing method.

There are several reports that have demonstrated that the reliabil-
ity of HPC systems can be affected by many factors [3, 5, 8, 12, 13].

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

HPC Asia 2018, January 2018, Tokyo, Japan Pei Li, Mulya Agung, Muhammad Alfian Amrizal, Ryusuke Egawa, and Hiroyuki Takizawa

One of the important factors is the operating temperatures of the
system. Several studies [4, 9, 11] have shown that the failure rate, λ,
dynamically changes with the change of operating temperature, T .
They also discussed that the relationship between λ and T is well
represented by the Arrhenius Equation [14].

Figure 1 shows the preliminary results of monitoring the CPU
temperatures for the CG kernel of the NAS benchmark [7]. The
left figure shows the changes of the CPU temperatures during the
execution of the CG kernel. By using the data of the temperatures,
we use the Arrhenius Equation to calculate the timings of the oc-
currence of failures. Then we plot the CDF (cumulative distribution
function) of the failure distribution and compare it with that of the
exponential distribution. The right figure shows the comparison
result. From this figure, we can see that there is a large discrep-
ancy between both CDFs. The relative root-mean-squared error
(RRMSE) is 0.71. Such a high RRMSE value suggests that, when
λ and T are highly correlated, the failure distribution will not fit
well with the exponential distribution. Therefore, deriving an OCI
by assuming an exponential distribution of failure with a constant
λ, as in Young’s [16] and Daly’s [2] works, might not lead to an
optimal execution time.

In this paper, we present a more advanced adaptive checkpointing
method to cope with the dynamically-changing failure rate. Our
work focuses on online checkpoint interval tuning to dynamically
adjust the checkpoint interval at runtime. Here, online means that
the fault-free execution time and the temperature behavior (equiv-
alent to the failure distribution) of the application are unknown
beforehand. The goal of this work is to accelerate application’s
total execution time by tuning the checkpoint interval based on the
runtime monitoring of CPU’s recent temperature. This work can
be divided into two parts: (1) To monitor the temperature and to
calculate the dynamic failure rate based on the existing Arrhenius
model. (2) To predict the future failure rate based on the trend de-
rived from the monitoring data, and to use the predicted value for
adjusting the checkpoint interval.

The rest of the paper is organized as follows. Section II describes
the problem to be discussed in this work. In Section III, a dynamic
checkpoint interval tuningmethod is proposed. Section IV evaluates
the proposedmethod and discusses the experimental results. Finally,
the conclusions and future plan of this work are shown in Section V.

2 PROBLEM DESCRIPTION
This work considers that there is a high correlation between failure
rate and the operating temperature. We assume that the temper-
ature of an HPC system is constantly monitored every t seconds.
Then, time series data of failure rates can be obtained by substi-
tuting the monitored temperature data into Arrhenius Equation
in [11].

The attempt to tune the checkpoint interval so as to minimize
application’s total execution time can be performed in two ways:
offline or online. In the offline approach, the whole time series data
must be fit into a distribution, and an OCI is analytically determined
based on the distribution. The drawback of this approach is that
it needs a preliminary run of the application to completely profile
the CPU temperature changes so as to fully collect the time series
data of the failure rates. On the other hand, the online approach

Figure 2: An example of the failure rate prediction.

discussed in this work does not require a preliminary run of the ap-
plication. In this approach, the time series data are obtained during
the execution, and those data are analyzed to predict an appropriate
checkpoint interval in the near future whenever a checkpoint is
taken. This interval must be re-adjusted as the time series data are
updated with newly obtained data. However, such an online mech-
anism might potentially introduce a certain additional overhead
to the application execution, and increase the total execution time.
Therefore, it is important to discuss both the benefit and overhead
of this approach. The main contribution of this work is to propose
an online adjustment method that minimizes the execution time.

3 THERMAL-AWARE DYNAMIC
CHECKPOINT INTERVAL TUNING

3.1 Methodology
In this work, a method to dynamically adjust the checkpoint inter-
val is proposed. As discussed in Section 2, the time series data of
dynamically changing failure rates are estimated by monitoring
the change in CPU temperature during the application execution.
The procedure of the proposed method is summarized as follows.

The first step is to monitor the CPU temperatures and to calculate
the failure rate using a model based on Arrhenius Equation. Then,
by using a lightweight prediction method, the failure rate in the
near future is predicted. Finally, the predicted failure rate is used to
calculate the interval to decide when to take the next checkpoint.

3.2 Failure Rate Prediction
As mentioned above, this work determines the next checkpoint
interval by using the monitored failure rates during the previous
checkpoint intervals. Figure 2 illustrates the failure rate prediction
method. In this figure, the mean time between failures (MTBF) rep-
resents the value of 1

f ailure rate . The three green bars in the figure
represent three consecutive checkpoint timings, namely previous,
current, and next checkpoint timings (from left to right). The inter-
val between the current and the next checkpoints is adjusted by
predicting the MTBF of this interval. The prediction is based on the
trend of the data points of the MTBF between the previous and the
current checkpoints. Since the adjustment is performed whenever
a checkpoint is taken, the computation of the prediction will intro-
duce an extra overhead. In order to minimize the overhead, in this

Thermal-aware Dynamic Checkpoint Interval Tuning for High Performance Computing HPC Asia 2018, January 2018, Tokyo, Japan

work, a lightweight Simple Moving Average (SMA) method is used
for the prediction [15]. First, data points of the MTBF between the
previous and the current checkpoints are smoothed by the SMA
calculation. The smoothed results are shown as the broken lines
in the figure. Then, the result of the SMA calculation, i.e., the last
value of the broken lines before the current checkpoint, is used as
the MTBF to calculate the interval for the next checkpoint.

3.3 Checkpoint Interval Tuning
In the proposed method, the next checkpoint interval is calculated
by using Young’s formula [16]. The OCI, ∆Younд , is approximated
by the following equation. It is based on only two parameters,
checkpoint overheadC and the failure rate (or MTBF) of the system.

∆Younд =
√
2 ×C ×MTBF . (1)

In our method, the OCI for each next checkpoint is determined
as follows:

∆i+1 = ∆Younд(MTBFi) . (2)

Here ∆i represents the OCI of the i-th checkpoint.

4 EXPERIMENTAL EVALUATION
To evaluate the effects of the proposed method, simulation-based
experiments have been conducted. In this section, the experimental
setup is first presented, and the experiment results are then shown
for discussions.

4.1 Experimental Setup
Three particular kernels of NAS Parallel Benchmarks (NPB) [7], i.e.,
FT, LU, and CG, are used to gather the sample data of the CPU tem-
peratures. The kernels are sequentially executed for 1,000 iterations
to simulate a large-scale application run on an HPC system. The
set of obtained sample data consists of the average temperatures
of all processor cores for each second. Table I shows the system
configuration used in the experiments.

In the monitoring step, the NPB kernels are executed under the
assumption where no failure nor checkpoint happens during the
execution time. The Linux lm_sensors tool [6] is used to monitor
the CPU temperatures during the execution. The monitoring is
performed every one second. Then, we use Arrhenius Equation
to convert temperature data into failure rate. Finally, a simulator
is implemented to mimic the occurrence of the failures under the
condition of the monitored temperature changes.

The simulator injects failures during the application execution
based on the integral calculation of the obtained failure rates from
the monitoring step. The integral calculation is performed as shown
in Equation (3).

F =

∫ tend

tstar t
f(t) dt . (3)

Here f (t), tstar t and tend represent the failure rate at monitoring
time t , application’s start time and end time, respectively. Every
time F reaches an integer value (1,2,3,...), the time stamp is recorded
and used as a failure occurrence timing.

Besides the failure injection, the simulator emulates the proposed
adaptive checkpointing and constant offline checkpointing with
various checkpoint intervals.

Table 1: Experimental Hardware Configuration

Processor: Intel Core i7-6700 CPU @ 3.40GHz
CPU Frequency Range: 800 MHz – 4000 MHz
Number of cores: 4 Cores
Memory: 16 GB RAM
Cache sizes: 32 KB L1, 256 KB L2, 8 MB L3

• Constant Optimal (C-opt): The checkpoint interval is calcu-
lated by using a brute-force search. Here, the brute-force
search is limited to checkpoint intervals whose values are
integers.

• Constant Average (C-avg): The checkpoint interval is deter-
mined by using the average failure rate.

• Constant Optimistic (C-opms): The checkpoint interval is
determined by using the minimum failure rate, which means
the longest checkpointing interval.

• Constant Pessimistic (C-pes): The checkpoint interval is de-
termined by using the maximum failure rate, which means
the shortest checkpointing interval.

4.2 Performance Comparison
To simulate the effects of the CPU temperature changes on the
failure rates in a large scale system, the failure rates are multiplied
by the factors of 10, 20, 40 and 80. This is because the failure rates in-
crease with the number of CPUs. The overhead of each checkpoint
is assumed to be small, such as in the case when a memory-based
checkpointing is used [17]. Thus, the temperature change during
the checkpoint and restart is negligible. The checkpoint overhead
C and restart overhead R are set to 1 second and 2 seconds, respec-
tively, in the following experiments.

Figure 3 shows the total waste time of all the tested methods.
The total waste time is defined as a sum of wasted computation
time and the total time spent for checkpointing and restarting the
application.

For the 10x, 20x, and 40x failure rate configurations, it can be
observed that the total waste time of Constant Optimal is the short-
est among the methods. This is because of two reasons: first, it is
an offline approach where the whole temperature data is known
beforehand and second, it uses brute-force search to test all possible
intervals. For the 10x and 40x failure rate configurations, our pro-
posed method can achieve the second-best results in terms of total
waste time even without the prior knowledge of the temperature
data. It is interesting to notice that the ratio of wasted computation
time and checkpoint waste time in our method is almost the same
(ratio 1:1). This is because we applied Young’s formula for tuning
the checkpoint interval. Note that Young’s formula attempts to min-
imize the total execution time by making the wasted computation
time and the checkpoint waste time equal [16].

Also, Figure 3 shows that Constant Pessimistic method can
achieve the shortest wasted computation time among the methods
because it overestimates the number of failures and takes check-
point very frequently compared to other methods. Thus, the wasted
computation time can be greatly reduced in exchange to an increase
in the checkpoint waste time. Constant Pessimistic method achieves

HPC Asia 2018, January 2018, Tokyo, Japan Pei Li, Mulya Agung, Muhammad Alfian Amrizal, Ryusuke Egawa, and Hiroyuki Takizawa

(a) Failure rates multiplied by 10 and 20 (b) Failure rates multiplied by 40 and 80

Figure 3: Evaluations of waste time under different failure rate multiply cases.

the second-best result when failure rate configuration is 20x, out-
performing our proposed method. This is because the checkpoint
overhead used in the simulation is relatively low, i.e, 1 second, and
thus the total checkpoint waste time has less contribution to the
total waste time compared to the total waste computation time
resulted from the more frequent checkpoint.

As the failure rate increases, the gap between Constant Optimal
and Constant Pessimistic becomes closer. When the failure rate is
increased to 80x, the total waste time of Constant optimal becomes
nearly identical to that of Constant pessimistic. Here, the constant
checkpointing method already reaches its limit because checkpoint-
ing is performed with the shortest checkpointing interval. On the
other hand, our proposed method starts to outperform Constant
optimal at this point. This highlights the benefit of dynamically
adjusting the checkpoint interval at runtime.

5 CONCLUSION AND FUTUREWORK
In this work, we present a thermal-aware dynamic checkpoint inter-
val tuningmechanism. The proposedmethod adjusts the checkpoint
interval by using the dynamic failure rate caused by the CPU tem-
perature changes. A constant checkpoint method cannot achieve
optimal performance because it does not take into account the CPU
temperature changes. On the other hand, the proposed method can
achieve comparable performance to the method whose the average
failure rate is already known before the application execution.

Our future work will focus on improving the accuracy of the
failure rate prediction. This work considers the checkpoint intervals
tuning for the applications that run on a single machine. However,
when a distributed application runs on a cluster of machines, the
CPU temperature trends of eachmachinemay vary. Thus, the future
work will also focus on improving the method for the distributed
applications.

ACKNOWLEDGMENTS
This research is partially supported by JST CREST "An Evolutionary
Approach to Construction of a Software Development Environment
for Massively-Parallel Heterogeneous Systems", DFG SPPEXA Ex-
aFSA, and Grant-in-Aid for Scientific Research(B) #16H02822.

REFERENCES
[1] Guohong Cao and Mukesh Singhal. 1998. On coordinated checkpointing in

distributed systems. IEEE Transactions on Parallel and Distributed Systems 9, 12
(1998), 1213–1225.

[2] John T Daly. 2006. A higher order estimate of the optimum checkpoint interval
for restart dumps. Future generation computer systems 22, 3 (2006), 303–312.

[3] Nosayba El-Sayed, Ioan A Stefanovici, George Amvrosiadis, Andy A Hwang, and
Bianca Schroeder. 2012. Temperature management in data centers: Why some
(might) like it hot. ACM SIGMETRICS Performance Evaluation Review 40, 1 (2012),
163–174.

[4] Paul Ellerman. 2012. Calculating Reliability using FIT & MTTF: Arrhenius HTOL
Model. microsemi, Tech. Rep. (2012).

[5] Saurabh Gupta, Devesh Tiwari, Christopher Jantzi, James Rogers, and Don
Maxwell. 2015. Understanding and exploiting spatial properties of system failures
on extreme-scale hpc systems. In Dependable Systems and Networks (DSN), 2015
45th Annual IEEE/IFIP International Conference on. IEEE, 37–44.

[6] lm sensors. 2017. Linux Hardware Monitoring. (2017). http://lm-sensors.org/
[7] NASA. 2017. NAS Parallel Benchmarks. (2017). https://www.nas.nasa.gov/

publications/npb.html
[8] Bin Nie, Devesh Tiwari, Saurabh Gupta, Evgenia Smirni, and James H Rogers.

2016. A large-scale study of soft-errors on gpus in the field. In High Performance
Computer Architecture (HPCA), 2016 IEEE International Symposium on. IEEE, 519–
530.

[9] F Shoji, S Matsui, M Okamoto, F Sueyasu, T Tsukamoto, A Uno, and K Yamamoto.
2015. Long term failure analysis of 10 peta-scale supercomputer. HPC in Asia
session at ISC2015, Frankfurt, Germany, July (2015), 12–16.

[10] Top 500 Supercomputer. 2017. TOP500 Lists. (2017). https://www.top500.org/
[11] Kun Tang, Devesh Tiwari, Saurabh Gupta, Ping Huang, Qiqi Lu, Christian En-

gelmann, and Xubin He. 2016. Power-capping aware checkpointing: On the
interplay among power-capping, temperature, reliability, performance, and en-
ergy. In Dependable Systems and Networks (DSN), 2016 46th Annual IEEE/IFIP
International Conference on. IEEE, 311–322.

[12] Devesh Tiwari, Saurabh Gupta, George Gallarno, Jim Rogers, and Don Maxwell.
2015. Reliability lessons learned from GPU experience with the Titan super-
computer at Oak Ridge leadership computing facility. In Proceedings of the in-
ternational conference for high performance computing, networking, storage and
analysis. ACM, 38.

[13] Devesh Tiwari, Saurabh Gupta, James Rogers, Don Maxwell, Paolo Rech, Sudhar-
shan Vazhkudai, Daniel Oliveira, Dave Londo, Nathan DeBardeleben, Philippe
Navaux, et al. 2015. Understanding gpu errors on large-scale hpc systems and
the implications for system design and operation. In High Performance Computer
Architecture (HPCA), 2015 IEEE 21st International Symposium on. IEEE, 331–342.

[14] Wikipedia. 2017. Arrhenius equation. (2017). https://en.wikipedia.org/wiki/
Arrheniusequation

[15] Wikipedia. 2017. Moving average. (2017). https://en.wikipedia.org/wiki/
Movingaverage

[16] John W Young. 1974. A first order approximation to the optimum checkpoint
interval. Commun. ACM 17, 9 (1974), 530–531.

[17] Gengbin Zheng, Lixia Shi, and Laxmikant V Kalé. 2004. FTC-Charm++: an
in-memory checkpoint-based fault tolerant runtime for Charm++ and MPI. In
Cluster Computing, 2004 IEEE International Conference on. IEEE, 93–103.

http://lm-sensors.org/
https://www.nas.nasa.gov/publications/npb.html
https://www.nas.nasa.gov/publications/npb.html
https://www.top500.org/
https://en.wikipedia.org/wiki/Arrheniusequation
https://en.wikipedia.org/wiki/Arrheniusequation
https://en.wikipedia.org/wiki/Movingaverage
https://en.wikipedia.org/wiki/Movingaverage

	Abstract
	1 Introduction
	2 Problem Description
	3 Thermal-aware Dynamic Checkpoint Interval Tuning
	3.1 Methodology
	3.2 Failure Rate Prediction
	3.3 Checkpoint Interval Tuning

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Performance Comparison

	5 Conclusion and Future Work
	References

