
Distributed Memory Task-Based Block Low Rank Direct Solver
Sameer Deshmukh
School of Computing,

Tokyo Institute of Technology
Tokyo, Japan

deshmukh.s.aa@m.titech.ac.jp

Rio Yokota
Global Scientific Information Center,

Tokyo Institute of Technology
Tokyo, Japan

rioyokota@gsic.titech.ac.jp

1 INTRODUCTION
Large dense matrices with low rank structures appear in problems such as
maximum likelihood estimation and boundary integral methods. The Block
Low Rank matrix format reduces the time complexity of the LU factorization
fromO (N 3) to ∼O (N 2) and the storage complexity fromO (N 2) toO (N 1.5).
Increasing problem sizes demand efficient distributed memory distributions.
In this work, we implement and benchmark a distributed asynchronous
runtime-system based Block Low Rank direct solver and compare it against
a fully dense task-based distributed solver, Scalapack and Elemental [2].

Dense matrices whose eigenvalues decay rapidly can be approximated
by means of a low rank approximation by using an SVD decomposition and
keeping only the k most significant eigenvalues of the matrix. If however,
we have a large dense matrix whose sub-blocks consist of low rank and
full rank blocks, we can approximate parts of the large matrix and get a
considerable gain in terms of performance and storage costs with tunable
accuracy. The Block Low Rank matrix format (Fig. 1) consists of Low Rank
blocks in the off-diagonal parts and full rank blocks along the diagonal.
We use the MPI interface of the starPU runtime system [1] for building a
distributed memory task-based LU factorization routine.

Low Rank Block

Block Low Rank (BLR)Dense

Dense Block

Figure 1:Block densematrix (left) vs. block low rankmatrix (right). Notice that the diagonal
elements are dense whereas off-diagonals are low-rank.

2 RESULTS
Experiments were conducted on the TSUBAME 3.0 supercomputer. Each
node houses two Intel Xeon E5-2680 v4 (2.4 GHz, 14 core) processors. Each
node runs a single process and single thread. We compare our dense and
BLR distributed LU factorization implementations against Scalapack and
Elemental. We make comparisons for a matrix generated from a gaussian
distribution of total size 32768 and block size 1024. We use the DMDA
scheduler from starPU.

2.1 Absolute time and process efficiency
Fig. 2a shows the comparison of absolute time of execution. Elemental is
the slowest while task-based BLR is the fastest.

The process efficiency is a measure of how well the processes are utilized.
In this case we model the process efficiency as E(N , P ) = 1

P ×
T1(N )

T (N ,P ) ,
where T1 is the time taken by a single process, T (N , P ) is the time taken
by P processes for a problem size N . Fig. 2b shows comparison between
the process efficiecies of various implementations.

2 4 6 8 10 12 14 16
NPROCS

24

25

26

27

28

29

210

211

TI
M

E

SCALAPACK
ELEMENTAL
HICMA BLR
HICMA DENSE
ideal

(a) Absolute time.

2 4 6 8 10 12 14 16
NPROCS

0.70

0.75

0.80

0.85

0.90

0.95

1.00

EF
FI

CI
EN

CY

SCALAPACK
ELEMENTAL
HICMA BLR
HICMA DENSE

(b) Process efficiency.

Figure 2: Comparison of absolute time and process efficiency.

2.2 Execution Profile
The execution profile of an application shows a breakdown of the proportion
of time that the computation spends in actual computation, waiting for data
and data transmission or runtime overhead. Obtaining such values helps in
precisely targeting the most non-optimum parts of the application.

1 4 6 9 12 16
NPROCS

0

100

200

300

400

500

600

TI
M

E

COMPUTE
WAIT
OVERHEAD

(a) Scalapack

1 4 6 9 12 16
NPROCS

0

500

1000

1500

2000

2500

TI
M

E

COMPUTE
WAIT
OVERHEAD

(b) Elemental

1 4 6 9 12 16
NPROCS

0

100

200

300

400

500

600

TI
M

E

COMPUTE
WAIT
OVERHEAD

(c) Task-based all dense

1 4 6 9 12 16
NPROCS

0

50

100

150

200

TI
M

E

COMPUTE
WAIT
OVERHEAD

(d) Task-based block low rank

Figure 3: Comparison of execution profiles.

ACKNOWLEDGEMENTS
This work was supported by JSPS KAKENHI Grant Numbers JP18H03248,
JP17H01749.

REFERENCES
[1] Cedric Augonnet, Olivier Aumage, Nathalie Furmento, Raymond Namyst, and

Samuel Thibault. StarPU-MPI: Task Programming over Clusters of Machines
Enhanced with Accelerators. In Siegfried Benkner Jesper Larsson Tr ff and Jack
Dongarra, editors, EuroMPI 2012, volume 7490 of LNCS. Springer.

[2] Jack Poulson, Bryan Marker, Robert A. van de Geijn, Jeff R. Hammond, and
Nichols A. Romero. Elemental: A New Framework for Distributed Memory Dense
Matrix Computations. 39(2):13:1–13:24.


	1 Introduction
	2 Results
	2.1 Absolute time and process efficiency
	2.2 Execution Profile

	References

