
Task-parallel algorithm for matrix factorizations
Tomohiro Suzuki

stomo@yamanashi.ac.jp
University of Yamanashi

Task-parallel algorithms have attracted attention as algorithms for
highly parallel architectures in recent years. One of the reasons is
that the block algorithm used for LAPACK, which is the de facto
standard of numerical linear algebra library, cannot sufficiently
utilize the recent highly parallel computing resources. The pur-
pose of the task-parallel algorithm is to keep all computing re-
sources running without stalling by executing a number of fine-
grained tasks asynchronouslywhile tracing data dependencies.We
can easily describe task-parallel programs by using OpenMP task
construct and depend clause. Besides, the priority clause intro-
duced in OpenMP 4.5 allows more efficient task scheduling.

Among various scientific computations, matrix factorization is
considered to be a well-matched algorithm with the task-parallel
programming model. Also, since matrix factorization is a heavy
process with O(N 3) of computational complexity, there is a high
demand for speeding up. In the block algorithm for matrix factor-
ization, it is possible to generate the tasks that can be executed in
parallel by dividing the trailing matrix into plural panels and per-
forming subsequent matrix update for each panel (Fig. 1). Further-
more, a relatively deep look-ahead can be easily achieved by rais-
ing the priority of the panel decomposition task with the priority
clause. However, the block algorithm can achieve little benefit from
efficiency improvement by task parallelization. This algorithm lacks
inherent parallelism.

step 0

…

step 1

Panel factorization Panel factorizationTrailing panels update Trailing panels update

Figure 1: Block matrix factorization

The tile algorithm divides a matrix vertically and horizontally
and decomposes and updates each submatrix (tile) (Fig. 2)[1]. By
adjusting the tile size, it is possible to generate a sufficient amount
of fine-grained tasks according to the number of parallel comput-
ing resources. The tasks are recognized byOpenMP task construct
and scheduled by describing dependencies between tiles in depend
clause. Smaller tiles can generate many fine-grained tasks, and this
can resolve load imbalances, but it causes a decline in the perfor-
mance of some tasks. Tile size tuning is a critical issue for the per-
formance of the tile algorithm.

PLASMA[3] is a numerical linear algebra library for multi-core
processors and provides routines for solving linear equations, eigen-
value problems, and singular value problems. The matrix factor-
ization routine of this library is parallelized using the tile algo-
rithm and follows the formula of OpenMP[4]. In PLASMA library,
(one-sided) matrix factorizations such as LU, Cholesky, and QR

�

Step 0

Step 1

Step 2

Step 3

Figure 2: Tile matrix factorization (4 × 4 tiles)

factorizations are implemented. Two-sided matrix factorizations,
such as block diagonalization, are also implemented by the tile
algorithm[2]. The author knows an example of task parallelization
using OpenMP for the block Jacobi method, which is an eigenvalue
solver for symmetric matrices.

In recent years, heterogeneous computing environments using
GPUs and FPGAs as accelerators had become popular. The classical
ways to get large speed benefits by throwing a large task into the
accelerator is not compatible with the task-parallel programming
model. It is necessary to verify the effectiveness of the task-parallel
algorithm in such a system.

In this presentation, the author presents some brief experimen-
tal results of task-parallel programs for matrix factorization with
both block and tile algorithms.

REFERENCES
[1] A. Buttari, J. Langou, J. Kurzak, and J. J. Dongarra, “A class of par-

allel tiled linear algebra algorithms for multicore architectures,” LA-
PACK Working Note, Tech. Rep. 191, Sep. 2007. [Online]. Available:
http://www.netlib.org/lapack/lawnspdf/lawn191.pdf

[2] H. Ltaief, J. Kurzak, and J. Dongarra, “Parallel band two-sided matrix bidiagonal-
ization for multicore architectures.” LAPACK Working Note, Tech. Rep. 209, Oct.
2008. [Online]. Available: http://www.netlib.org/lapack/lawnspdf/lawn209.pdf

[3] PLASMA. (2008) Accessed 2019-03-22. [Online]. Available:
https://bitbucket.org/icl/plasma

[4] A. YarKhan, J. Kurzak, P. Luszczek, and J. Dongarra, “Porting the
plasma numerical library to the OpenMP standard,” International Jour-
nal of Parallel Programming, vol. 45, pp. 612 – 633. [Online]. Available:
https://link.springer.com/article/10.1007/s10766-016-0441-6


