
More Accurate Computation for Double-Double Arithmetic
without Additional Execution Time by Parallel Processing

Hotaka Yagi∗
Tokyo University of Science
Shinjuku, Tokyo, Japan
1419521@ed.tus.ac.jp

Emiko Ishiwata
Tokyo University of Science
Shinjuku, Tokyo, Japan
ishiwata@rs.tus.ac.jp

Hidehiko Hasegawa
University of Tsukuba
Tsukuba, Ibaraki, Japan

hasegawa@slis.tsukuba.ac.jp

1 INTRODUCTION
While rounding errors are unavoidable in floating-point arithmetic,
the use of high-precision arithmetic is effective. Our team developed
MuPAT , an open-source interactiveMultiple Precision Arithmetic
Toolbox [3] for MATLAB and Scilab. MuPAT uses the DD (Double-
Double) algorithm, which is based on a combination of double-
precision arithmetic operations, and enables quasi quadruple-precision
arithmetic.We accelerate DD operations by usingAVX2 andOpenMP,
and achieve higher performance for heavier DD operations. This
poster shows more accurate computation can be performed without
additional execution time based on the parallelization.

2 ACCELERATION OF DD ARITHMETIC
There are two implementations of addition (a ⊕ b) in DD, called
Cray-style and IEEE-style [1]. The Cray-style requires 11 double-
precision floating-point operations, and only satisfies the weaker
error bound (a⊕b = (1+δ1)a+(1+δ2)b with |δ1 |, |δ2 | ≤ ϵdd = 2−105).
The IEEE-style requires 20 double-precision floating-point opera-
tions, and satisfies a much strong error bound (a⊕b = (1+δ)(a+b)
with |δ | ≤ 2ϵdd). The IEEE-style is accurate, but not widely used,
because of its computation cost. We tried to reduce its execution
times by using parallel processing. Since the order of computation
in DD arithmetic cannot be changed, we considered processing
multiple data simultaneously using data-level parallelism.

The DD multiplication algorithm utilizes FMA (Fused Multiply-
Add) [2], which can perform a double-precision floating-point
multiply-add operation in one step with a single rounding, and
the rounding error is reduced. AVX2 (Advanced Vector Extensions
2) instructions [2] can process four double-precision data in one
unit of time. The same arithmetic operations are applied to these
four data. Thereby, the performance may be increased four-fold.
OpenMP allows thread-level parallelism on shared memory for a
multicore environment, so the performance may increase by the
number of cores.

Performance [flops/sec] is defined as the number of double-
precision floating-point operations [flops] / the execution time [sec].
The upper bound of performance is defined as min(computational
performance, memory performance × operational intensity). The
computational performance [flops/sec] is defined as the product of
clock frequency for the CPU [Hz] and the number of flops which
can be computed in one unit of time [flops/cycles]. Memory per-
formance [bytes/sec] is defined as 8 bytes/cycles times the product
of clock frequency for memory [Hz] and the number of channels.
Operational intensity [flops/bytes] is defined as the number of
double-precision floating-point operations [flops] / the number of
memory references [bytes].

We used an Intel Core i7 7820HQ, 2.9 GHz processor, with
LPDDR3-2133 memory. The peak computational performance is
92.8 Gflops/sec using AVX2 with four cores. The peak memory
performance is 34.1 Gbytes/sec because there are two channels. We
utilized computation offloading to call an outer C function with the
MATLAB executable file.

Table 1: Operational intensity (O. I.) [flops/byte], exe-
cution time (serial/accelerated) [msec], and performance
(measured/upper bound) [Gflops/sec].

Cray-style IEEE-style
O. I. Time Perf. O. I. Time Perf.

y = αx +y 0.38 26/8.4 8.8/12.8 0.56 30/8.7 12.7/19.2
α = xTy 0.56 32/5.2 14.2/19.1 0.84 50/5.4 20.5/28.8
y = Ax 1.13 32/4.4 25.6/38.5 1.69 53/4.3 39.2/57.2

In Table 1, "Time" refers to the execution time of serial/accelerated
and "Perf." refers to the performance of measured / upper bound; N
= 4,096,000 for y = αx +y and α = xTy, and N = 2,500 for y = Ax .
If O. I. is below 2.72, when computational performance is equal to
memory performance× operational intensity, then the upper bound
of performance is limited by the memory performance. Therefore,
most of the execution time is taken up by memory references,
not computation. The execution times of y = αx + y, α = xTy,
and y = Ax are almost the same in both the Cray-style and the
IEEE-style. This means that the IEEE-style, which has higher com-
putational cost and higher O. I., is much accelerated by parallel
processing.

When operations are limited by memory performance and two
operations have the same number of memory references, some
additional computation can be processed in the same execution
time. In this case, high performance means that more computation
could be processed for the same amount of data. Thus, parallel
processing processes a much larger workload and provides us more
accurate results for the same time.

This research was supported by JSPS KAKENHI Grant Number
JP17K00164.

REFERENCES
[1] Yozo Hida, Xiaoye S. Li, and David H. Bailey. 2000. Quad-Double Arithmetic:

Algorithms, Implementation, and Application. Technical Report LBNL-46996.
[2] Intel. 2019. Intel Intrinsics Guides. Retrieved November 11 , 2019 from https:

//software.intel.com/sites/landingpage/IntrinsicsGuide/
[3] Satoko Kikkawa, Tsubasa Saito, Emiko Ishiwata, and Hidehiko Hasegawa. 2013.

Development and acceleration of multiple precision arithmetic toolbox MuPAT
for Scilab. JSIAM Letters 5 (2013), 9–12. https://doi.org/10.14495/jsiaml.5.9

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://doi.org/10.14495/jsiaml.5.9

	1 Introduction
	2 Acceleration of DD Arithmetic
	References

