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1 INTRODUCTION
In this study, we consider the ∗-congruence Sylvester equation

AX + X ∗B = C, (1)

where A ∈ Cm×n , B ∈ Cn×m , and C ∈ Cm×m , whereas X ∈
Cn×m is to be determined. The operator (·)∗ denotes the conjugate
transpose of a matrix and C denotes the set of all complex num-
bers. Equation (1) is regarded as an extension of the T-congruence
Sylvester equation

AX + XTB = C . (2)

Equation (1) appears in palindromic eigenvalue problems [2] aris-
ing from some realistic applications (see, e.g., [1]).

Recently, it is shown that the T-congruence Sylvester equation (2)
ismathematically equivalent to a generalized Sylvester equation [3,
4]. In other words, the transpose of the unknown matrix X can be
removed by appropriate transformations. It is indicated that find-
ing numerical solvers of equation (2) reduces to only finding them
of the generalized Sylvester equation.

The key idea of [3, 4] is to vectorize matrices. It is known that
a linear system with an m2 ×mn matrix can be obtained by vec-
torizing the T-congruence Sylvester equation (2). By applying an
appropriate linear operator to the linear system and returning vec-
tors into matrices, the generalized Sylvester equation is obtained.

However, for ∗-congruence Sylvester equation (1), the same ap-
proach as in [4] cannot be utilized because of the conjugate of the
unknownmatrix. To overcome this, we separate the real and imag-
inary parts of matrices, i.e., we obtain a real linear system with a
2m2×2mnmatrix. In this study, we consider applying an appropri-
ate linear operator to the linear system and returning it into a ma-
trix equation which does not include the conjugate and the trans-
pose of the unknown matrix. As a result, we demonstrate that the
∗-congruence Sylvester equation (1) is mathematically equivalent
to the generalized Sylvester equation.

2 MAIN RESULTS
Our main results are briefly written as follows:

Theorem 2.1. Let m ≥ n. Assume that there exists a matrix
S ∈ Cm×m such that BT = SĀ and λi λ̄j , 1 for the eigenval-
ues λ1, . . . , λm of S , where Ā is the conjugate of A. Then, the ∗-
congruence Sylvester equation (1) is equivalent to the following gen-
eralized Sylvester equation:

AX − B∗XST = C − (SC̄)T.

Theorem 2.2. Let m ≤ n. Assume that there exists a matrix
D ∈ Cn×m such that Im = AD and λi λ̄j , 1 for the eigenvalues
λ1, . . . , λm of S := BTD̄, where Im is the m × m identity matrix.
Then, the ∗-congruence Sylvester equation (1) is equivalent to the
following generalized Sylvester equation:

AX̂ − B∗X̂ST = C,

where X̂ satisfies X = X̂ − DX̂ ∗B.

3 CONCLUSION AND FUTUREWORK
In this study, we showed that the ∗-congruence Sylvester equation
ismathematically equivalent to the generalized Sylvester equation.
The results were obtained by applying an appropriate linear oper-
ator to the equivalent linear system. Our future work will focus on
efficient numerical algorithms using our results.
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