
Enabling OpenACC programming on Multi-hybrid Accelerated
with GPU and FPGA

Tsunashima, Ryuta1)　 Kobayashi, Ryohei2)1)　 Fujita, Norihisa2)　 Nakamichi, Ayumi1)　 Boku, Taisuke2)1)
Lee, Seyong3)　 Vetter, Jeffrey3)　Murai, Hitoshi4)　 Sato, Mitsuhisa4)

1) Graduate School of Systems and Information Engineering, University of Tsukuba, Ibaraki, Japan
2) Center for Computational Sciences (CCS), University of Tsukuba, Ibaraki, Japan
3) Oak Ridge National Laboratory (ORNL), TN, USA
4) Riken Center for Computational Science (R-CCS), RIKEN, Hyogo, Japan

Although theGPU ismain player for accelerated computation in
HPC, some category of applications are not suitable for it. For ex-
ample, partially poor parallelism, non-regular computation (warp
divergence) or frequent inter-node communication strongly de-
grade the performance in parallel GPU computing. On the other
hand, FPGAs have been emerging in HPC. FPGA enables us to
program the logic device in true co-designing manner. On April
2019, CCS in University of Tsukuba introduced a new GPU+FPGA
hybrid accelerated cluster named Cygnus[1]. However, currently
users have to describe programs in two languages, CUDA for GPU
and OpenCL for FPGA to utilize both devices effectively and it
causes heavy effort for users. It is much better if we can provide a
uniform framework to program both devices at a single code. Then
we are implementing a meta-compiler to apply OpenACC[2] for
both devices, based on background compilers for GPU and FPGA.

We assume to use two background compilers, PGI OpenACC
compiler for GPU and OpenARC[3] compiler for FPGA. As shown
in Figure 1, the meta-compiler splits the corresponding OpenACC-
directed parts out of original code into two parts for GPU and
FPGA. Then these parts are compiled by corresponding back-
end compilers. Finally, two object files are linked to a single ex-
ecutable file by PGI compiler. We use Omni compiler[4] developed
by RIKEN R-CCS and CCS of University of Tsukuba to implement
the meta-compiler. OpenARC is a compiler to enable OpenACC for
FPGA programming developed in ORNL. It translates OpenACC
code in C to OpenCL with C++, then compiles OpenCL code by
backend compiler, Intel FPGA SDK for OpenCL.

Since the meta-compiler is under development, we applied a
hand-compilation in our assumed manner from single OpenACC
code, then compiled them by PGI compiler and OpenARC. To eval-
uate our method, we compared the performance and source code
size (lines and characters) with a currently available programming
method with CUDA (for GPU) and OpenCL (for FPGA). We ex-
amined a synthetic code (not real application) where GPU per-
forms a matrix-matrix multiply, the result is transferred to FPGA,
then FPGA performs a CG method by this result matrix. Figure
2 shows the comparison between our OpenACC-only way and
CUDA+OpenCL for the code size (a) and (b), and execution time
(c). Here, "Others" of (a) includes miscellaneous parts such as ini-
tialization, validation function, etc. It is shown that our approach
can reduce the number of characters and lines in the source code
to approximately 50% and 30%, respectively. However, the perfor-
mance of both devices are degraded (GPU: 3.4x worse, FPGA: 1.67x
worse). We need more performance tuning both on code descrip-
tion and compilers.

Exec
file

A single
OpenACC
program

GPU
calc.

FPGA
calc.

OpenACC
program
for GPU

OpenACC
program
for FPGA

OpenACC
programs

�

�
�

① Implementing a single OpenACC
program
• Specifying target devices

② Generating OpenACC programs for
both devices
• We are currently implementing such a

translator

③ Separately compiling is performed
• PGI compiler is used for OpenACC

program for GPU

• OpenARC is used for OpenACC program
for FPGA

Figure 1: Our approach overview

5,502 5,830

1275 1268399 511

6052

1104

0

2000

4000

6000

8000

10000

12000

14000

16000

CUDA+OpenCL OpenACC

#
 o

f
ch

ar
ac

te
rs

ホストCUDA
ホストOpenCL
カーネルGPU
カーネルFPGA
その他

53%
reduced

be
tt

er host code (CUDA)
host code (OpenCL)
GPU kernel
FPGA kernel
Others

(a) The number of characters

be
tt

er

532

377

0

100

200

300

400

500

600

CUDA+OpenCL OpenACC

#
 li

ne
s

of
 c

od
e

30%
reduced

(b) The number of lines
be
tt
er

4664
7814

2094

7147

0
2000
4000
6000
8000
10000
12000
14000
16000

CUDA+OpenCL OpenACC

m
se
c

GPU
FPGA

(c) Execution time

Figure 2: Programming cost comparison

As future works, we will complete the meta-compiler, improve
the performance especially for FPGA programming by OpenACC,
and apply our method to real applications.

ACKNOWLEDGMENTS
This research is partially supported by "Communication-Computation Unified Super-
computing" project under MEXT’s "Next Generation Supercomputer R&D" program
and Collaborative Research between CCS, R-CCS and ORNL.

REFERENCES
[1] Supercomputers - Center for Computational Science.

https://www.ccs.tsukuba.ac.jp/eng/supercomputers/#Cygnus
[2] homepage | OpenACC https://www.openacc.org
[3] Lee, S. et al., OpenACC to FPGA: A Framework for Directive-based High-

Performance Reconfigurable Computing, IPDPS2016, pp 544-554
[4] Omni Compiler https://omni-compiler.org/

1

	Acknowledgments
	References

