
An Optimization ofH -matrix-vector Multiplication
by Using Un-used Cores

Tetsuya Hoshino
The University of Tokyo
Kashiwa-shi, Chiba, Japan
hoshino@cc.u-tokyo.ac.jp

Toshihiro Hanawa
The University of Tokyo
Kashiwa-shi, Chiba, Japan
hanawa@cc.u-tokyo.ac.jp

Akihiro Ida
The University of Tokyo
Bunkyo-ku, Tokyo, Japan
ida@cc.u-tokyo.ac.jp

EXTENDED ABSTRACT
Over the last decade, processor performance has mainly been im-
proved by increasing the number of cores, and the high-performance
computing field is correspondingly shifting from multi- to many-
core processors. On the other hand, the growth of memory perfor-
mance is relatively slow. As a result, especially inmemory-bounded
applications, the remaining cores, which do not contribute to the
performance or are detrimental, have been appeared. For example,
Intel Knights Landing (KNL) consists 68 coreswith 16GB fastmem-
ory (MCDRAM) and 96GB DDR4 memory. The memory through-
put of KNL will be saturated by 60 cores even if MCDRAM is used,
that is, 8 cores are un-used cores.

In this research, we consider optimization techniques to use
these un-used cores effectively. As a case study, we optimize an
H -matrix-vector multiplication on KNL cluster. The Byte/Flop ra-
tio of H -matrix vector computation is 8/2 = 4 while KNL’s ratio
is about 0.2, therefore the computation is memory-bounded.
H -matrices are an approximation technique for dense matrices,

such as the coefficient matrix of the boundary element method
(BEM). An H -matrix is expressed by a set of low-rank approxi-
mated and small dense sub-matrices, each of which has various
ranks. Figure 1 shows the structure of low-rank matrices includ-
ing H -matrices. To simplify MPI communication, we use Lattice
H -matrix [1] instead ofH -matrix for distributed memory cluster.

To perform an H -matrix-vector multiplication by using MPI +
OpenMP hybrid parallel programming model, 2 reduction opera-
tions are required. Figure 2 shows the calculation patterns of H -
matrix-vector multiplication with MPI + OpenMP. Lattice blocks
will be distributed to MPI processes and the computation of inner
lattice block will be parallelized by OpenMP threads. As shown in
Fig. 2, each OpenMP thread creates local result vector. To obtain
the result vector b, we have to reduce those local result vectors in
a MPI process. As a straight forward way, we can use atomic oper-
ation, which often causes performance degradation, to reduce the
vectors. After that, we have to collect the local result vector of a
MPI process.

We propose to use un-used cores for the reduce operations in-
stead of atomic operation. By controlling the size of lattice, the re-
duce calculation can be executed on L1/L2 cache of un-used cores.
In addition, we propose to leave MPI communications to un-used
cores to overlap the calculation time and communication time.

In the poster presentation, we will show the detail of optimiza-
tion and the experimental result ofH -matrix-vectormultiplication
on KNL cluster.

�!-matrix

�BLR-matrix �Lattice !-matrix

Lattice	structure

ℋ-submatrices
in	blocks	on	lattice

Figure 1: The structures of H -matrix, BLR-matrix, and lat-
ticeH -matrix. Blocks painted in deep red and light red show
dense and low-rank sub-matrices, respectively. Lattice H -
matrix is a combination of BLR-matrix andH -matrix.

×

x

＝

reduce

R
es
ul
t 
of
 t
hr
ea
d 
1

R
es
ul
t 
of
 t
hr
ea
d 
2

R
es
ul
t 
of
 t
hr
ea
d 
3

R
es
ul
t 
of
 t
hr
ea
d 
4

Re
su
lt 
of
 

pr
oc
es
s 
1

A1

＝

Ab

A2

×

R
es
ul
t 
of
 t
hr
ea
d 
1

R
es
ul
t 
of
 t
hr
ea
d 
2

R
es
ul
t 
of
 t
hr
ea
d 
3

R
es
ul
t 
of
 t
hr
ea
d 
4

reduce

Re
su
lt 
of

pr
oc
es
s 
2

�!-matrix

�BLR-matrix �Lattice !-matrix

Lattice	structure

ℋ-submatrices
in	blocks	on	lattice

×＝ A1 A2

Figure 2: Calculation pattern of Lattice H -matrix-vector
multiplication (b = Ax). To calculate b, reduce type compu-
tations are required.

REFERENCES
[1] Akihiro Ida. Lattice H-matrices on distributed-memory systems (in press). In 2018

IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2018.


