
Accurate DGEMM using Tensor Cores
Daichi Mukunoki

RIKEN Center for Computational
Science, Kobe, Japan

Katsuhisa Ozaki
Shibaura Institute of Technology,

Saitama, Japan

Takeshi Ogita
Tokyo Woman’s Christian University,

Tokyo, Japan

1 INTRODUCTION
As the demand for deep-learning increases, specialized hardware
dedicated to low-precision matrix-multiplication, which is the ker-
nel of those tasks, has been developing. Tensor Cores, which are
equipped on recent NVIDIA GPUs, are capable of computing a
matrix-multiplication on FP16 inputs with FP32 accuracy and re-
turn the result on FP16 or FP32 format. As it is 4 or 8 times faster
than FP32, many studies have been trying to utilize it on general
tasks as well. However, the applicable tasks are still limited, owing
to the tiny bit-length. This paper presents a novel way to utilize
Tensor Cores for matrix-multiplication (aka GEMM) with higher
accuracy than FP16. With that method, we can even create DGEMM
(GEMM on FP64), which is a kernel operation of many HPC tasks
as well as high-performance Linpack (HPL).

2 METHOD AND IMPLEMENTATION
Our approach, the Ozaki scheme [2], computes an accurate matrix-
multiplication as the summation of several matrix-multiplications
which can be computed without rounding-errors using the standard
floating-point operations. The input matrices are element-wisely
split into several matrices. It can achieve the correctly-rounded
result (computed with only one-rounding), but the accuracy can
be tunable. The number of split matrices (d) required to achieve
a certain accuracy depends on the range of the absolute values
in the input matrices, the inner-product wise dimension, and the
precisions of the computation and input data. It requires d2 matrix-
multiplications, and its cost becomes dominant in the total exe-
cution time. Our implementation is based on our previous work,
OzBLAS [1], using FP64 (DGEMM) on GPUs. It is designed to
achieve the correctly-rounded result with NearSum [3] in the com-
putation of C = AB. However, to utilize Tensor Cores, we modify it
as follows: (1) For splitting the input matrices on FP64 into FP16, we
need to change a parameter determining the number of split matri-
ces from the case for splitting into FP64, used in [1]. As a result, the
number of split matrices increases compared to the case for FP64.
Here, we also need to scale down the exponent on FP64 to fit in
FP16. The shift value is determined for each row on matrix A or col-
umn on B and must be kept to recover later. (2) The computations
of the split matrices are performed with cublasGemmEx, which
performs a matrix-multiplication of FP16 matrices with the FP32
accuracy and return the result on FP32 using Tensor Cores. (3) The
computed results, obtained on FP32, need to be scaled up by shifting
the exponent to compensate the scale down done previously.

3 PERFORMANCE
Table 1 shows the performance on NVIDIA Titan V, a Volta archi-
tecture GPU, on CUDA 10.0. The theoretical peak performance is
110 TFlops on Tensor Cores and 6.9 TFlops on FP64. The cublas-
GemmEx was called with CUBLAS_GEMM_DFALT_TENSOR_OP.

Table 1: DGEMM (C = AB, m = n = k = 10240) with correct-
rounding using Tensor Cores on Titan V

Input†1 Performance # of split Tensor Core usage
(exp. range) GFlops†2 matrices TFlops†3 Ratio†4

ϕ=0 (-10/-01) 1264 7 89.7 69%
ϕ=1 (-09/+02) 167.6 16 53.2 78%
ϕ=2 (-10/+04) 126.4 18 52.4 78%
ϕ=3 (-10/+07) 105.3 20 53.8 78%
ϕ=4 (-11/+09) 85.73 22 52.9 79%
†1: initialized as (rand − 0.5) × exp(ϕ × randn), where rand is an uniform
random number [0, 1) and randn is a random number from the standard normal
distribution. †2: obtained as 2n3/t , where t is the execution time in sec (as with
standard DGEMM). †3: performance of cublasGemmEx alone. †4: the ratio of
cublasGemmEx in the total execution time.

We note that our implementation achieves the correctly-rounded
result, which means that it is more accurate than cublasDgemm.
When the number of split matrices is 7, 49 cublasGemmEx are per-
formed. While 89.7e3/49 = 1830 GFlops was expected, 1264 GFlops
was obtained owing to the overhead for the other costs from the
splitting, scaling, and summation processes. When the number of
split matrices was greater than 7, the cublasGemmEx performance
was decreased because the computed matrix size became small with
memory-blocking due to the memory constraint.

4 CONCLUSION
We proposed an implementation of a DGEMM compatible routine
using Tensor Cores. Although our approach brings no performance
advantage on Titan V, which supports fast FP64, it can be beneficial
on hardware with limited FP64 support such as NVIDIA Tesla T4,
whose FP64 performance is 1/256 of the Tensor Cores. Therefore,
our approach opens the way to utilize AI-oriented hardware for
more general purposes and may impact the system co-design. The
same idea can be applied to create SGEMM or to create DGEMM
using FP32 GEMM as well as even Bfloat16. More detailed discus-
sions, including some techniques to improve the performance more,
are presented in our poster.

Acknowledgements. This work was supported by MEXT as
Exploratory Issue on Post-K computer (Development of verified nu-
merical computations and super high-performance computing en-
vironment for extreme researches) and JSPS KAKENHI #19K20286.

REFERENCES
[1] D. Mukunoki, T. Ogita, and K. Ozaki. 2019. Accurate and Reproducible BLAS

Routines with Ozaki Scheme for Many-core Architectures. In Proc. International
Conference on Parallel Processing and Applied Mathematics (PPAM2019). (to appear).

[2] K. Ozaki, T. Ogita, S. Oishi, and S.M. Rump. 2012. Error-free transformations
of matrix multiplication by using fast routines of matrix multiplication and its
applications. Numer. Algorithms 59, 1 (2012), 95–118.

[3] S. Rump, T. Ogita, and S. Oishi. 2009. Accurate Floating-Point Summation Part
II: Sign, K-Fold Faithful and Rounding to Nearest. SIAM Journal on Scientific
Computing 31, 2 (2009), 1269–1302.


	1 Introduction
	2 Method and Implementation
	3 Performance
	4 Conclusion
	References

