
Preliminary Evaluation towards Task Priority Control in HPX 

Suhang Jiang 
 GSIS 

 Tohoku University 

 Sendai, Miyagi, Japan 

jiang.suhang.s7@dc.tohoku.ac.jp  

Mulya Agung 
 GSIS 

 Tohoku University 

 Sendai, Miyagi, Japan 

agung@dc.tohoku.ac.jp 

Ryusuke Egawa 
 Cyberscience Center 

 Tohoku University 

Sendai, Miyagi, Japan 

 egawa@tohoku.ac.jp 

Hiroyuki Takizawa 
 Cyberscience Center 

 Tohoku University 

 Sendai, Miyagi, Japan 

 takizawa@tohoku.ac.jp 

1  Introduction 

Recently, task-based execution has been attracting attention 

because it does not perform expensive synchronization as long as 

the dependencies among tasks are not violated.  High Performance 

ParalleX (HPX)[1] is one of task-based programming and 

execution models, which provides a C++ class library to describe 

tasks and their dependencies, and also a runtime system for parallel 

computing based on the partitioned global address space (PGAS) 

model. 

HPX employs hybrid threading implementations[2], in which M 

logical threads (HPX threads) are assigned to N worker threads.  By 

using a task queue, tasks are first assigned to HPX threads without 

any help of the operating system. Whenever a worker thread 

becomes idle, an HPX thread is retrieved from the thread pool, and 

assigned to the worker thread. 

In the original runtime implementation, all tasks are managed 

using a single default task queue, and assigned to HPX threads in a 

thread pool in a first-in-first-out fashion since every task basically 

has the same priority of being executed. However, this could be 

inefficient, even though some important tasks should start 

execution earlier than others. 

2  Use of multiple task queues 

In the original HPX runtime system, tasks are assigned to HPX 

threads in a thread pool, which are initially not bound to any cores 

yet. With a task queue, task assignment is done in a first-in-first-

out fashion. Then, the HPX threads are retrieved from the thread 

pool, and executed by worker threads running on cores. One 

difficulty in this task assignment is that, if the execution of a task 

on the critical path is delayed by executing other threads, the total 

execution time increases. 

However, if the result of a preceding task is required by other 

subsequent tasks, the subsequent tasks are blocked until the result 

of the preceding task becomes available. Suppose that a task on the 

critical path, called a critical task, is blocked. Then, if some other 

tasks are also ready for execution, they might be executed earlier 

than the critical task, resulting in increasing the critical path. 

Therefore, we need to give a higher priority to critical tasks so as 

to prevent prolonging the critical path. 

To this end, we propose to decouple the default task queue by 

using two task queues, one is for critical tasks, and the other is for 

the other tasks. Since only the task at the head of a task queue is 

assigned to the HPX thread pool, we can give a higher priority for 

the critical tasks, and they can be assigned earlier if they are pushed 

into a dedicated queue. 

In addition, a thread mapping method, called NUMA-balanced, 

has been applied to map the worker threads to processor cores on 

the NUMA system. We apply thread mapping when the application 

is launched. Our results show that the thread mapping method can 

further improve the performance results of our task queue 

decoupling method because it reduces the load imbalance among 

the NUMA nodes. 

3 Evaluation and Discussions 

The experimental evaluation has been conducted on a NUMA 

system based on Intel Xeon Phi Knights Landing (KNL) processors. 

The benchmark used for the comparison is blocked Cholesky 

factorization[3][4], and its Cholesky decomposition task is 

considered as a critical task for “look-ahead” execution. 

Compared with the implementation of using the default task 

queue in Figure 1, the proposed implementation can increase the 

performance by 31.76% in terms of execution time. In addition, the 

thread mapping can further increase the performance by 4.8%.  

Figure 1: Execution time of using different number of 

threads in decoupled thread pools, comparing with using 

NUMA-balanced to map the threads based on the former.  

4  Conclusions and future work 

In this work, we have proposed a method to use decoupled task 

queues, and we have also evaluated the impacts of thread mapping 

on the performance results of our method. Our preliminary results 

show that assigning tasks to different task queues can improve the 

performance by giving a higher execution priority to critical tasks, 

and thread mapping can reduce the execution time of the tasks. 

In the future, we will automatically identify critical tasks and 

assign them to a dedicated queue.  

REFERENCES 
[1] Kaiser, Hartmut, et al. "HPX: A task based programming model in a global 

address space." Proceedings of the 8th International Conference on Partitioned 

Global Address Space Programming Models. ACM, 2014.  

[2] Grubel, Patricia, et al. "The performance implication of task size for applications 

on the HPX runtime system." 2015 IEEE International Conference on Cluster 

Computing. IEEE, 2015.  

[3] Cayrols, Sébastien, Iain Duff, and Florent Lopez. "Parallelization of the solve 

phase in a task-based Cholesky solver using a sequential task flow model." 

NLAFET Working Note (2018).  

[4] Dorris, Joseph, et al. "Task-based Cholesky decomposition on knights corner 

using OpenMP." International Conference on High Performance Computing. 

Springer, Cham, 2016. 


