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1 FILTERS COMPOSED OF A SINGLE
RESOLVENT

For a given real symmetric-definite generalized eigenproblemAv =
λBv, we solve those approximate eigenpairs whose eigenvalues are
in the specified interval [a,b] by using an appropriate filter.

Our filter is composed of some resolvents R(ρi ) ≡ (A− ρiB)−1B
whose shift ρi are complex numbers. For a given vector x, an appli-
cation of the resolvent y← R(ρ)x reduces to solve C(ρ)y = Bx for
y whose coefficient is the shifted matrix C(ρ) ≡ A − ρB, which we
assume to be solved by some direct method.

The shifted matrix is real-symmetric when the shift is real, and it
is real-symmetric and positive-definite when the shift is real and less
than the minimum eigenvalue. The matrix is complex-symmetric
non-singular when the shift is imaginary. To solve a symmetric
system of linear equations, we make an LDLT decomposition and
forward and backward substitutions.

Both amounts of computation to factor matrices and especially
storage to hold factors of matrices tend to limit the calculation when
we solve a large size problem under limited computing resources.
Both are proportional to the number of resolvents to compose the
filter, thus it is desirable to reduce the number.

We used two types of filters which use only a single resolvent:
1) F = дsTn (2γ R(ρ) − I ) . 2) F = дsTn (2γ ′ ImR(ρ ′) − I ) .

When the interval [a,b] is located at the lower-end of the eigenvalue
distribution, we can use the type-1 filter and the shift ρ is real and
less than the minimum eigenvalue. For the type-2 filter, the shift
ρ ′ is imaginary and the location of the interval may be anywhere.
Here, дs is the tight bound of the transfer function magnitude of the
filter in the stop-band, γ and γ ′ are real constants, and I denotes
the identity operator.

However, for these kinds of simple filters, shapes of transfer
functions cannot be made very good, mainly because only a single
resolvent is used rather than many. For example, their transfer
functions cannot have steep changes of values, thus the geometrical
ratio of the width of transition-bands to the width of the pass-band
cannot be made very small. Also, if the value of дs is set to very
small, the max-min ratio of the transfer function of the filter in the
pass-band λ ∈ [a,b]will be larger. If thismax-min ratio is very large,
the contained rates of required eigenvectors in the set of vectors
tend to have different orders of magnitudes after the filter is applied.
Thus, eigenvectors with larger transfer-rates dominate in a vector
and eigenvectors with smaller transfer-rates reduce accuracy. By

this reason, eigenvectors with smaller transfer-rates contained in
filtered vectors tend to be inaccurate. Therefore, some approximate
eigenpairs may fail to attain the level of required accuracy or lost.

In the above, we have assumed the filter is applied only once.

2 ITERATIVE REFINEMENT OF EIGENPAIRS
BY USING A FILTER

Even the shape of the transfer function of the filter may not be good,
we can obtain refined approximate eigenpairs if the combination of
a B-orthonormalization and an application of the filter is iterated a
small number (IT) of times by the following procedure.
1) Let Y (0) be an initial set ofm random column vectors.
2) Iterate the followings for i = 1, . . ., IT

B-orthonormalize Y (i−1) to make X (i);
X (i) is filtered to make Y (i).

3) Construct approximate eigenpairs from both setsX (IT) and Y (IT)
considering the shape of the filter’s transfer function.
During the above iteration, we decrease the numberm of B-ortho-
normalized vectors in the set if the effective rank of the set of
vectors is found decreased by B-orthonormalization in the step 2.

The orthonormalization prevents the tendency of those eigenvec-
tors whose transfer-rates are relatively smaller to lose information
by numerical rounding errors. The principle to use orthogonal-
ization of vectors in each iteration step is well known and called
orthogonal iteration [1–3].

3 CONCLUSION
We made some experiments for a banded real symmetric-definite
generalized eigenproblem whose size of matrices is 210,000 with
lower-bandwidth 3,051, which is a FEM discretization of the Lapla-
cian eigenproblem for a cube region with zero-Dirichlet boundary
condition. When we solve the system of linear equations to give
the action of the resolvent, the banded coefficient matrix is treated
as if the band is dense even it is actually very sparse.

In experiments, filters we used did not have good shapes of their
transfer functions because they were composed of only a single
resolvent so to reduce computer resource requirements. However,
we found present approach of iterative refinement of eigenpairs
worked well even the calculation was made in single-precision.
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