
Performance Improvement of Block Red-Black MILU(0)
Preconditioner with Relaxation on GPU

Akemi Shioya
The University of Electro-Communications

Tokyo, Japan
akemi.shioya@uec.ac.jp

Yusaku Yamamoto
The University of Electro-Communications

Tokyo, Japan
yusaku.yamamoto@uec.ac.jp

1 INTRODUCTION

The block red-black ordering [1] is often used to parallelize
the incomplete LU preprocessing. In this ordering strategy,
the computational grid is divided into blocks and then each
block is colored in the same way as the red-block ordering.
The advantage of this method is that the synchronization
cost is smaller because of the small number of colors, and
the convergence is better than the nodal red-black method
because the nodes are grouped into blocks. The MILU(0)
factorization compensates for the fill-in elements dropped
during the ILU factorization process, thereby reducing the
influence of dropping fill-ins is reduced. However, zero pivots
occur when the MILU(0) factorization is combined with the
red-black ordering. This situation can be avoided by using
the relaxation coefficient α for compensation in the MILU(0)
factorization [2]. However, this method has only been eval-
uated on CPUs. In this poster, we parallelize a Krylov sub-
space solver with this preconditioner and evaluate its perfor-
mance on a modern GPU with high computing performance.

2 IMPLEMENTATION

We parallelized a BiCGSTAB solver combined with block
red-black ordering and relaxed MILU(0) factorization for
GPUs using OpenACC and optimized with the following:

• Realizing coalesced memory access in the for-
ward/backward substitution: In the natural stor-
age format, the elements of each block are stored sep-
arately, so the efficiency of data access is deteriorated.
Therefore, all the matrices and vectors used in the
block parallelization are stored in such a way that data
accessed by adjacent threads are adjacent in the array.

• Exploiting the single precision performance of
the GPU: There is a difference of several times be-
tween single-precision and double-precision computa-
tion speed of the GPU. The relationship between the
computed solution and the residual is maintained for
the right preconditioning even if the substitution cal-
culation contains errors [3]. Therefore, the calculation
is performed by the single precision operation in sub-
stitution.

3 PERFORMANCE TEST

We use the Poisson equation arising from the Particle-In-
Cell (PIC) plasma simulation as a test problem. The envi-
ronment is a GDEP MAS-i7WF workstation equipped with
a Quadro GP100. We used the CUDA 9.1 and PGI Fortran
17.4 compilers with -O3 optimization.

To speed up the calculation time, the number of blocks
should be (1) in multiples of 32 and (2) 32×6 or more per SM.
Fig. 1 shows a comparison of the computation time between
the naive implementation and the improved implementation.
These implementation techniques and optimizations have
greatly improved the computation speed compared to naive
implementations. In addition, the proposed method achieved
shorter solution times compared to the BiCGSTAB imple-
mentations with ILU(0) or AMG preconditioning included
in the GPU libraries cuSPARSE, MAGMA, and ViennaCL.

Small: 59×59×29 grid Medium: 119×119×59 grid Large: 239×239×119 grid

Forward sus�tu�on Backward sus�tu�on SpMV Memcopy HtoD Others

0

5

10

15

20

25

30

35

40

Before A!er

]s
m[

e
mi

T

0

50

100

150

200

250

300

350

Before A!er

T
im
e
 [
m
s]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Before A!er

T
im
e
 [
s]

Figure 1: Profiling results of of BiCGSTAB iteration.

4 CONCLUSION

We parallelized the solution of linear simultaneous equations
with the coefficient matrix ordered by the block red-black
ordering and preconditioned by the relaxed MILU(0) and
optimized the parameters for parallel computation on GPUs.
The optimization significantly improved the execution speed
compared to the naive implementation, and the solution was
obtained faster than by the BiCGSTAB routines in existing
libraries. In the future, we will further examine the block
division conditions and evaluate them in other environments.

REFERENCES
[1] Iwashita T. and Shimasaki M. 2003. Block red-black ordering: A

new ordering strategy for parallelization of ICCG method. Inter-
national Journal of Parallel Programming 31, 1 (2003), 55–75.

[2] Shioya A. and Yamamoto Y. 2018. The danger of combining block
red-black ordering with modified incomplete factorizations and its
remedy by perturbation or relaxation. Japan Journal of Indus-
trial and Applied Mathematics 35, 1 (2018), 195–216.

[3] Tadano H. and Sakurai T. 2007. On single precision pre-
conditioners for Krylov subspace iterative methods. In In In-
ternational Conference on Large-Scale Scientific Computing.
Springer, Berlin, Heidelberg, 721–728.

