
Dissection sparse direct solver and parallel task management

Atsushi Suzuki*

Atsushi.Suzuki@cas.cmc.osaka-u.ac.jp
Cybermedia Center, Osaka University

Toyonaka, Osaka, Japan

1 INTRODUCTION

For numerical simulation of partial differential equations
(PDE), we need to solve linear systems with symmetric or
unsymmetric large sparse matrices obtained by discretization
by finite difference, finite volume and finite element methods.
Number of unknowns is more than one million and condition
number of the large sparse matrix is more than 106, due
to large variety of physical coefficients and/or coupling of
different physics. Sometimes direct solver could be only a
possible tool to find solution of such difficult linear system.

There are several sparse direct solvers for parallel computa-
tional environments, e.g., SuperLT_MT, Pardiso, SuperLD_DIST,
MUMPS. The first two codes run on shared memory systems
and others run on distributed memory system. Aamong them,
a sparse solver Dissection, we have first developed it for sym-
metric matrix in DOI:10.1002/nme.4729 on shared memory
architecture, with keeping numerical stability by employ-
ing robust pivoting technique. Now the solver can factorize
structurally symmetric matrix, which means nonzero pattern
of the matrix is symmetric, in both double and quadruple
precision arithmetic thanks to modern C++ implementation.

2 NESTED-DISSECTION ORDERING
AND POSTPONING PIVOTS

For efficient computation, it is important to analyze the struc-
ture of non-zero entries including fill-ins during numerical fac-
torization and to construct some independent sub-structures
for parallel computation.

The nested dissection ordering consists of a binary struc-
ture where the root of the tree is taken from the first separator
of the sparse matrix, which corresponds to an interface be-
tween two subdomains of the original PDE. The matrix 𝐴
is decomposed into 3 × 3 blocks whose diagonal consists
of [𝐴22 𝐴33 𝐴11] and off-diagonal blocks 𝐴23 and 𝐴32 are
both null. The same bisection procedure is applied to each
submatrix 𝐴22 and 𝐴33. By 𝑙-level recursive bisection proce-
dure, 2𝑙 submatrices are obtained at the bottom of the tree.
These matrices are treated as sparse, but other submatrices
in the upper levels are treated as dense matrix because of
fill-ins. Hence, parallelization of sparse part is natural and
easy though we need to pay attention on load balancing
because of variation in size of sub-matrices. For upper bisec-
tion level, we use block strategy to extract parallel execution
from 𝐿𝐷𝑈 -factorization of dense matrix. By setting block
size as 𝑏, factorization consists of three different tasks, 𝛼 :
𝐿𝐷𝑈 -factorization with pivoting for 𝑏×𝑏 matrix, 𝛽 : solution
of multiple right-hand sides for both upper and lower blocks,
and 𝛾 : rank-𝑏 update.

To keep numerical stability of 𝐿𝐷𝑈 -factorization, it is
crucial to use pivoting i.e., permutation of entries depend-
ing on numerical data. We employ symmetric pivoting with
postponing, where pivot is selected from the diagonal entries
of the matrix, and the rest of the factorization of the block
is skipped when the ratio of diagonal entries becomes less
than a given threshold 𝜏 . If the ratio of diagonal entries is
less than 𝜏 , then the lower block is not factorized. These
postponed pivots are collected at the end and an extra Schur
complement will be generated from these entries. This idea
of pivot postponing can be implemented as a static way in
the context of task management. If we pass the pivot en-
tries above bisection tree in one higher level, the whole data
structure and dependency of tasks needs to be reformulated,
which results in dynamic task management.

During preparation of tasks, we add a task for postponing
procedure at the end of DAG for block 𝐿𝐷𝑈 -factorization.
This pre-assigned extra task will be immediately marked as
completion if no pivot postponing happens.

3 TASK DEPENDENCY ANALYSIS
Since matrix is unsymmetric, task
𝛽 has two variants for upper and
lower block, like 𝛽+ and 𝛽−. Let
us suppose the block matrix con-
sists of 𝑛 × 𝑛, as the right fig-
ure. By preparing symbols ‘←’ to
show dependence between tasks,
‘-’ to force sequential execution
and braces ‘{’ and ‘}’ to show

𝛼(1) 𝛽
(1)
+2 𝛽

(1)
+3 𝛽

(1)
+𝑛

𝛽
(1)
−2

𝛽
(1)
−3

𝛽
(1)
−𝑛

𝛾
(1)
2,2 𝛾

(1)
2,3 𝛾

(1)
2,𝑛

𝛾
(1)
3,3 𝛾

(1)
3,𝑛

𝛾
(1)
𝑛,𝑛

𝛾
(1)
3,2

𝛾
(1)
𝑛,2 𝛾

(1)
𝑛,3

independent task in the same group, we rewrite the DAG as
follows

𝛼
(1)
1 ← {𝛽(1)

+2 -𝛽
(1)
−2 -𝛾

(1)
2,2-𝛼

(2)
2 , 𝛽

(1)
+3 , 𝛽

(1)
−3𝛽

(1)
+4 , 𝛽

(1)
−4 , . . . , 𝛽

(1)
+𝑛, 𝛽

(1)
−𝑛}

← {𝛾(1)
2,3 , 𝛾

(1)
3,3 , . . . , 𝛾

(1)
3,2 , . . . , 𝛾

(1)
𝑛,𝑛}

← {𝛽(2)
+3 -𝛽

(2)
−3 -𝛾

(2)
3,3-𝛼

(3)
3 , 𝛽

(2)
+4 , 𝛽

(2)
−4 , . . . , 𝛽

(2)
+𝑛, 𝛽

(2)
−𝑛}

← {𝛾(2)
3,4 , . . . , 𝛾

(2)
4,3 , . . . , 𝛾

(2)
𝑛,𝑛} ← · · ·

← 𝛽
(𝑛−1)
+𝑛 -𝛽

(𝑛−1)
−𝑛 -𝛾(𝑛−1)

𝑛,𝑛 -𝛼(𝑛)
𝑛 .

Here in the first group, all tasks are independent and each of

them only has dependency on 𝛼
(1)
1 . If all cores are working

with tasks in the first group, there is no need to verify any
dependency of the task. Hence we use a mixture of static and
dynamic task assignments. In precise, the static assignment
will be happen when all cores have been arrived to a group
i.e., tasks within braces ; cores will receive assigned tasks
considering complexity of tasks to achieve good load balance.
This technique can drastically reduce idling of CPU cores.


	1 Introduction
	2 Nested-dissection ordering and postponing pivots
	3 Task dependency analysis

