
Acceleration of Numerical Turbine using the Red-Black Method
Yuta Hougi, Kazuhiko Komatsu, Osamu Watanabe, Masayuki Sato, Hiroaki Kobayashi

Tohoku University, Sendai, Miyagi, Japan
{yuta.hougi.t8@dc.,komatsu@,masa@,koba@}tohoku.ac.jp

1 INTRODUCTION
Numerical Turbine is a simulation code to analyze the flows in
steam turbines for the design of highly-efficient turbines and to
analyze mechanisms of blades deterioration [1]. Since the scales of
simulations have been expanded in recent years in order to sim-
ulate the flows more accurately, it is necessary to shorten the ex-
ecution time. One of the most dominant routines, called implicit,
occupies 35% of the total execution time. Thus, it is important to
reduce this routine time. The implicit routine is optimized by the
hyperplane method [2] to exploit vector computing units in most
of recent processors. However, the hyperplane method requires
memory accesses with large strides, and their long memory access
time is an obstacle to further acceleration. In this poster, we imple-
ment the Red-Black method, and discuss its effectiveness through
experimental results quantitatively.

2 CALCULATION IN IMPLICIT ROUTINE
The implicit routine calculates physical fields Δ𝑄 such as momen-
tum and internal energy of mass unit derived from the vector of
flux, the viscous term, and the source term of the Navier-Stokes
equations. Figure 1(a) shows that the adjacent points are refer-
enced when calculating Δ𝑄 of the center grid point. The center
point and its neighbors are not calculated at the same time to avoid
updating Δ𝑄 in the irregular order. Therefore, the calculations of
the grid points cannot be easily vectorized.

Figure 1(b) shows how the implicit routine is vectorized by us-
ing the hyperplane method. The numbers in the grid points in-
dicate the order of a sweep. A group of grid points with the same
number is called a hyperplane. In the calculations of the grid points
in the𝑚-th hyperplane, their adjacent points exist in the (𝑚 − 1)
and (𝑚 + 1)-th hyperplanes. This allows vector calculation of grid
points in the𝑚-th hyperplane by avoiding dependency among the
grid points and their neighbors.

However, the vector calculation by the hyperplane method re-
quires large stride memory accesses. From the view point of the
data layout in the memory, the grid points on the same hyperplane
are arranged with strides of 𝐼𝑠𝑖𝑧𝑒 −2, and they increase as the prob-
lem size becomes large. Since a processor accesses data at block
granularity, large stride memory accesses increase the number of
loaded blocks. As the result, the memory access time becomes a
bottleneck.

3 RED-BLACK METHOD
Figure 1(c) shows the Red-Black method. All the grid points are
color-coded in the order of red and black. At first, all the red points
are calculated, and then all the black points are calculated. In the
calculation at the 𝑛-th step, Δ𝑄𝑛 of the red points are calculated
using Δ𝑄𝑛−1 of the adjacent black points, and then Δ𝑄𝑛 of the
black points are updated by using Δ𝑄𝑛 of the adjacent red points.
Since the Red-Black method avoids data dependency among the

(a) Referenced neighbors (b) Hyperplane (c) Red-Black

Figure 1: Vectorization methods.

Figure 2: Execution time using two methods.

adjacent points, the calculations of the points in a group of the
same color can be vectorized.

Since the red and black points are arranged alternately in the
memory, strides for each color are fixed to 1 regardless of the prob-
lem scale, which are much shorter than those of the hyperplane
method. As a result, the number of memory accesses can be re-
duced compared to the hyperplane method.

4 EVALUATION
In this evaluation, we use NEC SX-Aurora TSUBASA Vector En-
gine Type 10B. Figure 2 shows the execution time of the implicit
kernel vectorized by using the hyperplane method and the Red-
Black method. The results show that the memory access time is
reduced by 42.6%. As a result, the Red-Black method can reduce
the execution time by 34.6% compared to the hyperplane method.
While the number of memory accesses in the hyperplane method
is 3.43 × 108, that in the Red-Black method is 1.97 × 108. There-
fore, the Red-Black method can accelerate the implicit routine by
reducing the number of memory accesses in addition to shortening
memory access strides.

5 CONCLUSION
In this poster, we discuss the Red-Black method for the implicit
routine to reduce the number of memory accesses. The evaluation
results show that the Red-Black method can reduce the execution
time of the routine by 34.6%. As future work, we plan to investigate
the effect of acceleration by improving the cache hit rate by cache
blocking for the implicit routine with the Red-Black method.

REFERENCES
[1] S. Yamamoto et al., “Parallel computation of condensate flows through 2-d and

3-d multistage turbine cascades.” In Proc. Intl. Gas Turbine Congress, 2007.
[2] H. Matsuoka et al., “Program optimization of Numerical Turbine for vector su-

percomputer SX-ACE.” In Proc. Parallel CFD2016, p. 8, 2017.


	1 Introduction
	2 Calculation in Implicit routine
	3 Red-Black method
	4 Evaluation
	5 Conclusion
	References

