
Performance Tuning of Deep Learning Framework Chainer on
the K computer.

Akiyoshi KURODA∗

RIKEN Center for Computational
Science

Kobe, Hyogo, Japan
kro@riken.jp

Kiyoshi KUMAHATA∗

RIKEN Center for Computational
Science

Kobe, Hyogo, Japan

Syuichi CHIBA†

Platform Software Business Unit,
Fujitsu Limited.

Numazu, Shizuoka, Japan

Katsutoshi TAKASHINA†

Technical Computing Solutions Unit,
Fujitsu Limited.

Kobe, Hyogo, Japan

Kazuo MINAMI∗
RIKEN Center for Computational

Science
Kobe, Hyogo, Japan

Figure 1: Elapsed time on the all tuning step. Figure 2: Elapsed time of the scaling result.

CCS CONCEPTS
• Theory of computation → Theory and algorithms for ap-
plication domains;Machine learning theory; Boosting; •General
and reference→ General conference proceedings.

KEYWORDS
The Supercomputer Fugaku, Deep Learning, Chainer, Performance
Optimization, The K Computer

Recently GPUs has become a popular platform for executing deep
learning (DL) workloads. We revisit the idea of doing DL on CPUs,
especially massively parallel CPU clusters (supercomputers). In an-
ticipation of deployment of the Supercomputer Fugaku with much
more DL capable CPUs, we investigate which optimizations can
be already done using the K computer, current leadership comput-
ing facility and predecessor to the Supercomputer Fugaku. We use
Chainer as a deep learning framework of choice. Chainer expresses
the hierarchical structure of deep learning using Python, and all
calculations can be realized using numpy without special libraries.
Many of the cost was the calculation of the square root and the
arithmetic when the filter was updated and activation functions.

These operations are not optimizedwhen calculated using numpy
and are particularly slow on the K computer. By replacing the ker-
nel with software pipelining and SIMD optimization by Fortran

library, the kernel elapsed time was improved to 1/11.08 and to-
tal elapsed time was improved to 1/4.54[fig.1]. Moreover, by opti-
mizing floating point underflow exception when building Python,
total elapsed time was improved to 1/3.39. Generally gemm con-
volution cost is high in the DL calculations, By replacing the SSL2
gemm library called by Python with the thread-parallel version,
section elapsed time was improved to 1/5.03, the total elapsed time
was improved to 1/1.15, and the performance efficiency of gemm
convolution was improved about 70.05% [1]. Python control part
has no thread scalability. By dividing the Python procedure by data
process parallelization using ChainerMN [fig.2], the total elapsed
time was improved to 1/2.24. As a result of these optimizations,
the overall speed ratio was 36.4 times, and the efficiency reached
35.9%.

There are some limitations on the use of Chainer on the K com-
puter. It is necessary to prepare the learning data beforehand and
to stage-in the data to an appropriate storage system. Moreover,
since Python is in the shared storage, it takes time to load the li-
brary. However, I believe that we will be able to use the supercom-
puter Fugaku for deep learning sufficiently as well as GPU.

REFERENCES
[1] Akiyoshi Kuroda, Kiyoshi Kumahata, Syuichi Chiba, Katsutoshi Takashina, and

Kazuo Minami. 2019. Performance Tuning of Deep Learning Framework Chainer
on the K computer. ISC2019 Research Poster, PR (2019), 28.


