
A Study on Compiler Dependent Performance Improvement

Ryoichi Shibata

Kogakuin University
 j016137@ns.kogakuin.ac.jp

Akira Fukuda

Kyushu University

fukuda@f.ait.kyushu-u.ac.jp

Yusuke Sato

 Kogakuin University

 cm18019@ns.kogakuin.ac.jp

Takeshi Kamiyama

Kyushu University

kami@f.ait.kyushu-u.ac.jp

Masato Oguchi
Ochanomizu University

oguchi@is.ocha.ac.jp

Saneyasu Yamaguchi
Kogakuin University

sane@cc.kogakuin.ac.jp

1 INTRODUCTION

An Android program written in Java or Kotlin language is compiled

into Dalvik Executable (DEX) bytecode via Java bytecode. It then

is executed on Android Runtime (ART). ART sometimes compiles

DEX bytecode to native code using Just-In-Time (JIT) compiler.

This paper evaluates the execution time of applications that are

written in Java and Kotlin language without JIT compilation,

analyzes the cause of the difference in performance based on DEX

bytecode, and discusses a method for improving the performance

by modifying DEX bytecode.

2 EVALUATION AND IMPROVEMENT

We implemented the almost same programs in Java and Kotlin,

which execute an empty for statement times and are described in

Fig. 1. Fig. 2 shows their times to complete the loop without JIT

compilation. The results indicate that the bytecode from Kotlin is

faster by 7.52%. Figure 3 and 4 show DEX bytecodes of the for

statement generated from the Kotlin and Java source codes,

respectively. The time of default bytecode from Java is slower than

Kotlin, and this can happen if there is described an instruction that

doesn't have to process every time in the target of goto instruction.

We modified the bytecodes from the Java source code. Namely, we

changed the target of goto instruction one instruction ahead.

Figure 5 shows the modified bytecode. The result of “Java modified”

in Fig. 2 shows its execution time. The results show that the

performance of the bytecode from the Java language improved.

Figure 1: Source code of for statement in Java and Kotlin

Figure 2: Execution time without JIT compilation

Figure 3: DEX bytecode of for statement from Kotlin

Figure 4: DEX bytecode of for statement from Java-(default)

Figure 5: Modified DEX bytecode that Java-derived

3 CONCLUTION

In this paper, we evaluated the performance of for statements

written in Java and Kotlin language on ART. We showed their

difference and a method for improving the performance by

modifying the DEX bytecode generated from Java. We plan to

implement this improving method in a Java compiler.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant Numbers

17K00109, 18K11277.

This work was supported by JST CREST Grant Number

JPMJCR1503, Japan.

REFERENCES
[1] Madhurima Banerjee, Subham Bose, Aditi Kundu, Madhuleena Mukherjee, “A

comparative study: Java Vs kotlin Programming in Android,” International

Journal of Advanced Research in Computer Science, [S.l.], v. 9, n. 3, p. 41-45,

june 2018. ISSN 0976-5697. doi: 10.26483/ijarcs.v9i3.5978.

14d8c8: 1405 00e1 f505 |0012: const v5, #05f5e100

14d8ce: 1216 |0015: const/4 v6, #1

14d8d0: 1217 |0016: const/4 v7, #1

14d8d2: 3657 0400 |0017: if-gt v7, v5, +0004

14d8d6: b067 |0019: add-int/2addr v7, v6

14d8d8: 28fd |001a: goto -0003

1240a0: 1215 |0014: const/4 v5, #1

1240a2: 1406 00e1 f505 |0015: const v6, #05f5e100

1240a8: 3665 0500 |0018: if-gt v5, v6, +0005

1240ac: d805 0501 |001a: add-int/lit8 v5, v5, #01

1240b0: 28f9 |001c: goto -0007

11ae22: 1215 |0013: const/4 v5, #1

11ae24: 1406 00e1 f505 |0014: const v6, #05f5e100

11ae2a: 3665 0500 |0017: if-gt v5, v6, +0005

11ae2e: d805 0501 |0019: add-int/lit8 v5, v5, #01

11ae32: 28fc |001b: goto -0004

Java:

for(int j=1; j<=100000000; j++){ }

Kotlin:

for(j in 1..100000000){ }

3206.25 3447.36 3231.16

0

2000

4000

Kotlin default Java default Java modified

ti
m

e[
m

s]

