Single Precision Calculation of Iterative Refinement of Eigenpairs of a Real Symmetric-Definite Generalized Eigenproblem by Using a Filter Composed of a Single Resolvent

HIROSHI MURAKAMI (Tokyo Metropolitan University)

• By using a filter, we solve approximate eigenpairs of a real symmetricdefinite GEVP whose eigenvalues are within a specified interval.

• We assume the system of linear equations, which gives the action of a resolvent, is solved by some direct method.

• The filter is a polynomial of a single resolvent in order to reduce both costs to factor the matrix and to store the factors. But, the transfer function of such a filter is not good in shape, and

residuals of approximate eigenpairs will not be small.

• Vectors to span an approximate invariant subspace are improved by iterations of the combination of orthonormalization and filtering.

Filters composed of a single resolvent

• For a real symmetric-definite GEVP $Av = \lambda Bv$, we solve approximate eigenpairs whose eigenvalues are within the specified interval [a, b] by using a filter.

• Our filter is composed of resolvents $\mathcal{R}(\rho_i) \equiv (A - \rho_i B)^{-1} B$ whose shift ρ_i are complex numbers.

For a given vector x, an application of the resolvent $y \leftarrow \mathcal{R}(\rho)x$ reduces to solve $C(\rho)y = Bx$ for y whose coefficient is the shifted matrix $C(\rho) \equiv A - \rho B$, which in present study is solved by some direct method.

• The shifted matrix $C(\rho)$ is real-symmetric when ρ is real, and it is real-symmetric and positive-definite when ρ is real and less than the minimum eigenvalue. Expansion basis inside an element : tri-linear functions.
Matrix size of A and B : N = N₁ N₂ N₃ (N₁ ≤ N₂ ≤ N₃). Lower band-width of A and B : w_L = 1 + N₁ + N₁ N₂.

• Filter diagonalization method is applied to solve approximate eigenpairs whose eigenvalues are within [a, b].

Eigenvalues of this test problem can be calculated exactly by simple formulae.
Also the correct number of eigenvalues within any interval can be counted up.

Experiments of Iterative Refinements (in S-P)

FE partitionings of a cube : $(N_1, N_2, N_3) = (50, 60, 70)$. A and B have size N=210,000 and lower-bandwidth $w_L=3,051$.

• Single-precision (IEEE 754 FP32, 7.2 digits precision) is used for numbers and arithmetics in calculations.

• Calculation in S-P has little margin for accuracy. However,

- In recent years, attention has been paied to power saving through low-precision calculations.

- There are systems that calculate much faster in S-P than in D-P.

10

Relative Residual of Eigenpair

• The quality of an approximate eigenpair (λ, v) is evaluated by the relative residual defined as :

 Θ

$$\equiv \frac{||Av - \lambda Bv||}{||\lambda Bv||}.$$
 (2)

Here, $|| \cdot ||$ is the 2-norm of a vector.

• The approximate eigenpair is accurate when Θ is small. - Θ does not depend on the vector normalization of v.

 $- \Theta$ is unchanged if both A and B are scaled by a factor.

• When ϕ is the angle between two vectors Av and λBv :

 $\sin\phi \leq \Theta. \tag{3}$

7.2 (Ex-1): Solution of Lower-end Eigenpairs

• Within the lower-end interval [a, b] = [0, 100], there are 402 eigenvalues to be solved.

- Within the union of the pass-band and the transitionband [a, b'] = [0, 150], there are 764 eigenvalues.
- The number of vectors to be filtered is set to m = 800, which is more than 764 and to be sufficient.

• Results of experiments are shown (Tab. 2, Fig. 6).

• The matrix $C(\rho)$ is complex-symmetric non-singular when ρ is imaginary. To solve a symmetric system of linear equations, we make an LDL^T decomposition and forward and backward substitutions.

• Both amounts of *computation to factor matrices* and especially *storage to hold factors of matrices* tend to limit the calculation when a large size problem is solved under limited computing resources. Both are proportional to the number of resolvents used in the filter, thus it is desirable to reduce the number.

• We used two types of filters composed of only a single resolvent:

1) $\mathcal{F} = g_{\mathrm{s}} T_n(2\gamma \mathcal{R}(\rho) - I)$. 2) $\mathcal{F} = g_{\mathrm{s}} T_n(2\gamma' \operatorname{Im} \mathcal{R}(\rho') - I)$.

• When the eigenvalue interval [a, b] is located at the lowerend, the type-1 filter can be used and the shift ρ is real and less than the minimum eigenvalue. For the type-2 filter, the shift ρ' is imaginary and the interval can be

placed anywhere. Here, $g_{\rm S}$ is the upper-bound of the transfer function magnitude in the stop-band, γ and γ' are real constants, and I denotes the identity operator.

• But, since only a single resolvent is used, transfer functions of these simple filters cannot have very good shapes.

Their transfer functions cannot have steep changes of values.

 $\Rightarrow \mu$, the ratio of the width of transition-bands to the width of the pass-band cannot be very small.

- Also, if g_s is set to a very small value, the max-min ratio of the transfer function within the pass-band $\lambda \in [a, b]$ will be larger.
- If this max-min ratio is very large, contained rates of required eigenvectors in the set of vectors tend to have different orders of magnitudes after the filtering.

- Designs of Filters Used for Present Experiments
- For *lower-end* eigenpairs, the filter is a deg *n* Chebyshev polynomial of a resolvent with a *real* shift.
- For *interior eigenpairs*, the filter is a deg *n* Chebyshev poly of the *imaginary-part* of a resolvent with an *imaginary* shift.
- The filter's transfer function is specified by a set of parameters (n, μ , g_s), and here we always set $\mu = 1.5$.
- We prepared 6 designs of filters, both for lower-end eigenpairs and for interior ones.
- Degree n is 4, and values of g_s are 1E-3, 1E-4 and 1E-5.
- Value of g_s is 1E-5, and degree n are 6, 8 and 10.
- For 6 designs of filters of both types, values of g_p and g_s / g_p are shown (Tab. 1).

Table 1: Properties of 6 designed filters for lower-end eigenpairs and interior eigenpairs (μ =1.5) (g_s/g_p is the ratio of reduction per iteration.)

		for lower	r-end pairs	for inter	rior pairs
n	$g_{\mathtt{s}}$	$g_{\mathtt{P}}$	$g_{\rm s}/g_{\rm p}$	$g_{\mathtt{p}}$	$g_{\rm s}/g_{\rm p}$
4	1E-3	1.9E-2	5.2E-2	7.2E-2	1.4E-2
4	1E-4	3.6E-3	2.8E-2	1.9E-2	5.3E-3
4	1E-5	5.3E-4	1.9E-2	3.7E-3	2.7E-3
6	1E-5	1.5E-3	6.5E-3	1.3E-2	8.0E-4
8	1E-5	2.6E-3	3.9E-3	2.1E-2	4.7E-4
10	1E-5	3.3E-3	3.0E-3	2.7E-2	3.7E-4

The larger the value of $g_{\rm p}$, the better the filter. The smaller the value of $g_{\rm S}/g_{\rm p}$, the better the filter.

Table 2: (Ex-1): num of iterations vs. num of approx eigenpairs and the max relative residuals. (The correct number of eigenpairs is 402.)

	$g=4$, $g_{ m S}$ =	= 1E-3	n	$=4$, $g_{\rm S}$ =	= 1E-4	n	$=4$, $g_{\rm S}$ =	= 1E-5
IT	<pre># pairs</pre>	Θ_{\max}	IT	<pre># pairs</pre>	Θ_{\max}	IT	<pre># pairs</pre>	Θ_{\max}
1	(5)	2.3E+00	1	(82)	5.0E-01	1	(139)	1.6E-01
2	(394)	2.3E-01	2	402	6.8E-02	2	402	2.7E-02
3	402	1.6E-02	3	402	2.3E-03	3	402	2.7E-03
4	402	9.6E-04	4	402	4.1E-04	4	402	8.7E-04
5	402	3.8E-04	5	402	3.9E-04	5	402	4.5E-04
6	402	3.8E-04	6	402	4.1E-04	6	402	4.5E-04
<i>n</i>	$g=6$, $g_{\rm S}$ =	= 1E-5	 n	$=8$, $g_{\rm S}$ =	= 1E-5		$= 10$, $g_{\rm S}$	= 1E-5
IT	# pairs	Θ_{\max}	IT	<pre># pairs</pre>	Θ_{\max}	IT	# pairs	Θ_{\max}
1	(222)	2.3E-01	1	(264)	1.8E-01	1	(287)	1.7E-01
2	402	1.1E-02	2	402	3.6E-03	2	402	2.2E-03
3	402	3.8E-04	3	402	4.0E-04	3	402	3.9E-04
4	402	3.8E-04	4	402	3.9E-04	4	402	4.0E-04
				19				

7.3. (Ex-2): Solution of Interior Eigenpairs

• Within the interior interval [a, b] = [100, 200], there are 801 eigenvalues to be solved.

- Thus, eigenvectors with larger transfer-rates dominate in a vector and eigenvectors with smaller transferrates reduce accuracy.
- \Rightarrow Eigenvectors with smaller transfer-rates contained in filtered vectors tend to be inaccurate.
- \Rightarrow Some approximate eigenpairs may fail to attain the level of required accuracy or lost.

Iterative Refinement of Eigenpairs by Using a Filter
In the above, the filtering is assumed to make only once.

• Even the filter's transfer function is not good in shape, approximate eigenpairs can be improved if the combination of *B*-orthonormalization and filtering is iterated a small number (IT) of times by the following procedure:

Let Y⁽⁰⁾ be an initial set of m random column vectors.
 Iterate the followings for i = 1,..., IT

 Y⁽ⁱ⁻¹⁾ is B-orthonormalized to obtain X⁽ⁱ⁾;
 X⁽ⁱ⁾ is filtered to obtain Y⁽ⁱ⁾.

 Construct approximate eigenpairs from both sets X^(IT) and Y^(IT) considering the shape of the filter's transfer function.

• During the above iteration, m is updated to the effective rank of the set of vectors revealed by the B-orthonormalization in the step 2.

• The orthonormalization is introduced to prevent eigenvectors whose transfer-rates are relatively smaller from losing information by numerical rounding errors. The principle of using vector orthogonalization in each iteration step is well known and called as *orthogonal iter-ation*.

• R	esults	of experi	imen	ts are	shown (T	`ab.	3, Fig.	7).
				21				
1 1 2 3 4 <i>r</i> 1 1 2 3 4	<pre># pairs (329) 801 801 801 801 # pairs (800) 801 801 801 801</pre>	$ \begin{array}{r} 1.9E-01 \\ 5.3E-02 \\ 9.4E-04 \\ 3.1E-05 \\ = 1E-5 \\ \Theta_{max} \\ 3.2E-01 \\ 2.2E-04 \\ 2.7E-05 \\ $	1 1 2 3 4 1 1 1 2 3 4	<pre># pails (598) 801 801 801 801 801 (825) 801 801 801</pre>	$ \begin{array}{r} 1.8E-01\\ 8.8E-03\\ 5.6E-05\\ 2.6E-05\\ \hline = 1E-5\\ \hline 3.3E-01\\ 8.3E-05\\ 3.6E-05\\ 3.5E-05\\ \hline 3.5E-05\\ \hline \end{array} $	1 1 2 3 4 <i>n</i> 1T 1 2 3 4	<pre># palls (701) 801 801 = 10, $g_{\rm S}$ # pairs (828) 801 801 801 801</pre>	$3.0E-03$ $2.4E-03$ $2.9E-03$ $2.6E-03$ $= 1E-5$ Θ_{max} $3.2E-0$ $6.0E-03$ $3.8E-03$ $3.8E-03$

 $n = 4, g_{\rm S} = 1$ E-3 $n = 4, g_{\rm S} = 1$ E-4 $n = 4, g_{\rm S} = 1$ E-5

Test Problem for Experiments

• A 3-D Laplacian eigenproblem with zero-Dirichlet boundary for a cubic region whose length of a side is π :

 $-\Delta \Psi(x, y, z) = \lambda \Psi(x, y, z).$ (1) By FEM discretization, a real symmetric-definite GEVP $A v = \lambda B v$ is obtained.

• Sides of the cube are equi-divided into $N_1 + 1$, $N_2 + 1$, $N_3 + 1$ sub-intervals to make finite elements (Fig. 1).

Figure 1: Concept of FE partitioning of a cube. Case $(N_1, N_2, N_3) = (3, 5, 6)$.

Conclusion

- We made some experiments for a banded real symmetricdefinite generalized eigenproblem derived from FEM discretization of the Laplacian eigenproblem for a cubic region with zero-Dirichlet boundary condition.
- In experiments, we used filters composed of only a single resolvent in order to reduce computer resource requirements, but their transfer functions are not good in shapes.
- However, we found the present approach to improve eigenpairs iteratively worked well even when the calculation was made in single-precision.

24