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• By using a filter, we solve approximate eigenpairs of a real symmetric-

definite GEVP whose eigenvalues are within a specified interval.

• We assume the system of linear equations, which gives the action

of a resolvent, is solved by some direct method.

• The filter is a polynomial of a single resolvent in order to reduce

both costs to factor the matrix and to store the factors.

But, the transfer function of such a filter is not good in shape, and

residuals of approximate eigenpairs will not be small.

• Vectors to span an approximate invariant subspace are improved by

iterations of the combination of orthonormalization and filtering.
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Filters composed of a single resolvent

• For a real symmetric-definite GEVP Av = λBv, we solve

approximate eigenpairs whose eigenvalues are within

the specified interval [a, b] by using a filter.

• Our filter is composed of resolvents R(ρi) ≡ (A−ρiB)−1B

whose shift ρi are complex numbers.

For a given vector x, an application of the resolvent y ←
R(ρ)x reduces to solve C(ρ)y = Bx for y whose coefficient

is the shifted matrix C(ρ) ≡ A − ρB, which in present

study is solved by some direct method.

• The shifted matrix C(ρ) is real-symmetric when ρ is real,

and it is real-symmetric and positive-definite when ρ is

real and less than the minimum eigenvalue.
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• The matrix C(ρ) is complex-symmetric non-singular when

ρ is imaginary. To solve a symmetric system of linear

equations, we make an LDLT decomposition and for-

ward and backward substitutions.

• Both amounts of computation to factor matrices and espe-

cially storage to hold factors of matrices tend to limit the

calculation when a large size problem is solved under

limited computing resources. Both are proportional to

the number of resolvents used in the filter, thus it is

desirable to reduce the number.

• We used two types of filters composed of only a single

resolvent:

1) F = gs Tn(2 γ R(ρ)− I) . 2) F = gs Tn(2 γ′ ImR(ρ′)− I) .
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• When the eigenvalue interval [a, b] is located at the lower-

end, the type-1 filter can be used and the shift ρ is real

and less than the minimum eigenvalue. For the type-2

filter, the shift ρ′ is imaginary and the interval can be

placed anywhere. Here, gs is the upper-bound of the

transfer function magnitude in the stop-band, γ and γ′
are real constants, and I denotes the identity operator.

• But, since only a single resolvent is used, transfer func-

tions of these simple filters cannot have very good shapes.

– Their transfer functions cannot have steep changes of

values.

⇒ μ, the ratio of the width of transition-bands to the

width of the pass-band cannot be very small.
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– Also, if gs is set to a very small value, the max-min ratio

of the transfer function within the pass-band λ ∈ [a, b]

will be larger.

– If this max-min ratio is very large, contained rates of

required eigenvectors in the set of vectors tend to have

different orders of magnitudes after the filtering.

– Thus, eigenvectors with larger transfer-rates domi-

nate in a vector and eigenvectors with smaller transfer-

rates reduce accuracy.

⇒ Eigenvectors with smaller transfer-rates contained

in filtered vectors tend to be inaccurate.

⇒ Some approximate eigenpairs may fail to attain the

level of required accuracy or lost.

5

Iterative Refinement of Eigenpairs by Using a Filter

• In the above, the filtering is assumed to make only once.

• Even the filter’s transfer function is not good in shape,

approximate eigenpairs can be improved if the combina-

tion of B-orthonormalization and filtering is iterated a

small number (IT) of times by the following procedure:

1) Let Y (0) be an initial set of m random column vectors.

2) Iterate the followings for i = 1, . . ., IT

Y (i−1) is B-orthonormalized to obtain X(i) ;

X(i) is filtered to obtain Y (i).

3) Construct approximate eigenpairs from both sets X(IT)

and Y (IT) considering the shape of the filter’s transfer

function.
6

• During the above iteration, m is updated to the ef-

fective rank of the set of vectors revealed by the B-

orthonormalization in the step 2.

• The orthonormalization is introduced to prevent eigen-

vectors whose transfer-rates are relatively smaller from

losing information by numerical rounding errors.

The principle of using vector orthogonalization in each

iteration step is well known and called as orthogonal iter-

ation.
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Test Problem for Experiments

• A 3-D Laplacian eigenproblem with zero-Dirichlet bound-

ary for a cubic region whose length of a side is π :

−Δ Ψ(x, y, z) = λ Ψ(x, y, z) . (1)

By FEM discretization, a real symmetric-definite GEVP

Av = λB v is obtained.

• Sides of the cube are equi-divided into N1 + 1, N2 + 1,

N3 + 1 sub-intervals to make finite elements (Fig. 1).

Figure 1: Concept of FE partitioning of a cube. Case (N1, N2, N3) = (3, 5, 6) .
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• Expansion basis inside an element : tri-linear functions.

• Matrix size of A and B : N = N1 N2 N3 (N1 ≤ N2 ≤ N3 ) .

Lower band-width of A and B : wL = 1 + N1 + N1 N2.

• Filter diagonalization method is applied to solve approx-

imate eigenpairs whose eigenvalues are within [ a, b ].

• Eigenvalues of this test problem can be calculated ex-

actly by simple formulae.

Also the correct number of eigenvalues within any in-

terval can be counted up.
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Experiments of Iterative Refinements (in S-P)

FE partitionings of a cube : (N1, N2, N3) = (50, 60, 70).

A and B have size N=210, 000 and lower-bandwidth wL=3, 051.

• Single-precision (IEEE 754 FP32, 7.2 digits precision)

is used for numbers and arithmetics in calculations.

• Calculation in S-P has little margin for accuracy.

However,

– In recent years, attention has been paied to power

saving through low-precision calculations.

– There are systems that calculate much faster in S-P

than in D-P.
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Designs of Filters Used for Present Experiments

• For lower-end eigenpairs, the filter is a deg n Chebyshev

polynomial of a resolvent with a real shift.

• For interior eigenpairs, the filter is a deg n Chebyshev poly

of the imaginary-part of a resolvent with an imaginary shift.

• The filter’s transfer function is specified by a set of pa-

rameters ( n, μ, gs ), and here we always set μ = 1.5.

• We prepared 6 designs of filters, both for lower-end

eigenpairs and for interior ones.

– Degree n is 4, and values of gs are 1E-3, 1E-4 and 1E-5.

– Value of gs is 1E-5, and degree n are 6, 8 and 10.

• For 6 designs of filters of both types, values of gp and

gs / gp are shown (Tab. 1).
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Table 1: Properties of 6 designed filters for lower-end eigenpairs and in-

terior eigenpairs (μ=1.5) ( gs/gp is the ratio of reduction per iteration.)

for lower-end pairs for interior pairs

n gs gp gs / gp gp gs / gp

4 1E-3 1.9E-2 5.2E-2 7.2E-2 1.4E-2

4 1E-4 3.6E-3 2.8E-2 1.9E-2 5.3E-3

4 1E-5 5.3E-4 1.9E-2 3.7E-3 2.7E-3

6 1E-5 1.5E-3 6.5E-3 1.3E-2 8.0E-4

8 1E-5 2.6E-3 3.9E-3 2.1E-2 4.7E-4

10 1E-5 3.3E-3 3.0E-3 2.7E-2 3.7E-4

The larger the value of gp, the better the filter.

The smaller the value of gs/gp, the better the filter.
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Figure 2: Log-plot of transfer function magnitude |g(t)| (n = 4)

(Filter for lower-end eigenpairs)13
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Figure 3: Log-plot of transfer function magnitude |g(t)| (gs = 1E-5)
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Figure 4: Log-plot of transfer function magnitude |g(t)|
(n = 4, right-half) (Filter for interior eigenpairs)15
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Figure 5: Log-plot of transfer function magnitude |g(t)|
(gs = 1E-5, right-half) (Filter for interior eigenpairs)16

Relative Residual of Eigenpair

• The quality of an approximate eigenpair (λ, v) is evalu-

ated by the relative residual defined as :

Θ ≡ ||Av − λB v ||
||λB v || . (2)

Here, || · || is the 2-norm of a vector.

• The approximate eigenpair is accurate when Θ is small.

– Θ does not depend on the vector normalization of v.

– Θ is unchanged if both A and B are scaled by a factor.

• When φ is the angle between two vectors Av and λBv :

sin φ ≤ Θ . (3)
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7.2 (Ex-1): Solution of Lower-end Eigenpairs

• Within the lower-end interval [ a, b ] = [ 0, 100 ],

there are 402 eigenvalues to be solved.

• Within the union of the pass-band and the transition-

band [ a, b′ ] = [ 0, 150 ], there are 764 eigenvalues.

• The number of vectors to be filtered is set to m = 800,

which is more than 764 and to be sufficient.

• Results of experiments are shown (Tab. 2, Fig. 6).
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Table 2: (Ex-1): num of iterations vs. num of approx eigenpairs and

the max relative residuals. (The correct number of eigenpairs is 402.)

n = 4, gS = 1E-3

IT # pairs Θmax

1 (5) 2.3E+00

2 (394) 2.3E-01

3 402 1.6E-02

4 402 9.6E-04

5 402 3.8E-04

6 402 3.8E-04

n = 4, gS = 1E-4

IT # pairs Θmax

1 (82) 5.0E-01

2 402 6.8E-02

3 402 2.3E-03

4 402 4.1E-04

5 402 3.9E-04

6 402 4.1E-04

n = 4, gS = 1E-5

IT # pairs Θmax

1 (139) 1.6E-01

2 402 2.7E-02

3 402 2.7E-03

4 402 8.7E-04

5 402 4.5E-04

6 402 4.5E-04

n = 6, gS = 1E-5

IT # pairs Θmax

1 (222) 2.3E-01

2 402 1.1E-02

3 402 3.8E-04

4 402 3.8E-04

n = 8, gS = 1E-5

IT # pairs Θmax

1 (264) 1.8E-01

2 402 3.6E-03

3 402 4.0E-04

4 402 3.9E-04

n = 10, gS = 1E-5

IT # pairs Θmax

1 (287) 1.7E-01

2 402 2.2E-03

3 402 3.9E-04

4 402 4.0E-04
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Figure 6: (Ex-1): eigenvalue vs. log of rel residual for each iteration

( m=800 vectors are filtered. The correct number of eigenpairs is 402.)
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7.3. (Ex-2): Solution of Interior Eigenpairs

• Within the interior interval [ a, b ] = [ 100, 200 ],

there are 801 eigenvalues to be solved.

• Within the union of the pass-band and transition-bands

[ a′, b′ ] = [ 75, 225 ], there are 1, 192 eigenvalues.

• The number of vectors to be filtered is set to m = 1, 300,

which is more than 1, 192 and to be sufficient.

• Results of experiments are shown (Tab. 3, Fig. 7).
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Table 3: (Ex-2): num of iterations vs. num of approx eigenpairs and

the max of relative residuals. ( The correct number of eigenpairs is 801.)

n = 4, gS = 1E-3

IT # pairs Θmax

1 (329) 1.9E-01

2 801 5.3E-02

3 801 9.4E-04

4 801 3.1E-05

n = 4, gS = 1E-4

IT # pairs Θmax

1 (598) 1.8E-01

2 801 8.8E-03

3 801 5.6E-05

4 801 2.6E-05

n = 4, gS = 1E-5

IT # pairs Θmax

1 (701) 3.0E-01

2 801 2.4E-03

3 801 2.9E-05

4 801 2.6E-05

n = 6, gS = 1E-5

IT # pairs Θmax

1 (800) 3.2E-01

2 801 2.2E-04

3 801 2.7E-05

4 801 2.7E-05

n = 8, gS = 1E-5

IT # pairs Θmax

1 (825) 3.3E-01

2 801 8.3E-05

3 801 3.6E-05

4 801 3.5E-05

n = 10, gS = 1E-5

IT # pairs Θmax

1 (828) 3.2E-01

2 801 6.0E-05

3 801 3.8E-05

4 801 3.8E-05
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Figure 7: (Ex-2): eigenvalue vs. log of rel residual for each iteration

(m=1300 vectors are filtered. The correct number of eigenpairs is 801.)
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Conclusion

• We made some experiments for a banded real symmetric-

definite generalized eigenproblem derived from FEM

discretization of the Laplacian eigenproblem for a cu-

bic region with zero-Dirichlet boundary condition.

• In experiments, we used filters composed of only a sin-

gle resolvent in order to reduce computer resource re-

quirements, but their transfer functions are not good in

shapes.

• However, we found the present approach to improve

eigenpairs iteratively worked well even when the calcu-

lation was made in single-precision.
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