

Sound Rendering and Its Acceleration Using FPGA Yiyu Tan and Toshiyuki Imamura

RIKEN Center for Computational Science, 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo, Japan Email: tan.yiyu@riken.jp; imamura.toshiyuki@riken.jp

(i) Introduction

> Sound rendering based on FDTD schemes is computation-intensive and memory-intensive. The solutions include FPGA-based direct hardware implementation and software simulations on general-purpose processors and GPU.

General-purpose Processors

- Wave equations are implemented using programming language, such as C++.
- Computation efficiency is low due to intensive data requirements, lots of data misses in caches, and limited memory bandwidth.

■ GPU

- Wave equations are implemented using programming language, and computations are carried out by streaming multiprocessors in parallel.
- Data are exchanged through the on-chip shared memory.

(iv) Performance Evaluation

- The performance of the proposed sound field rendering system is evaluated and compared with the software simulation on a desktop machine with 128 GB DDR4 memory and an Intel i7-7820X processor running at 3.6 GHz. The C++ codes in the software simulation are compiled by the gcc compiler with the option -O3 and -fopenmp to use all eight cores in the processor.
- The reflection coefficient of boundaries is 0.95, the computed time steps are 1000. when the number of nodes computed in parallel is 16, the FPGA-based rendering system takes almost half of the rendering time, and **doubles** the computation throughput of the software simulations performed on the desktop.

Wave equations are directly implemented by reconfigurable logic cells. Data are stored by on-chip D flip-flops or block memories.

(ii) Rendering Algorithm

The explicit compact FDTD rendering algorithm is applied, and 7-point stencil scheme is adopted. The updated equation and parameters are shown as follows.

$$P_{i,j,k}^{n+1} = D1 * [P_{i-1,j,k}^{n} + P_{i+1,j,k}^{n} + P_{i,j-1,k}^{n} + P_{i,j+1,k}^{n} + P_{i,j,k-1}^{n} + P_{i,j,k+1}^{n} + 2P_{i,j,k}^{n}]$$

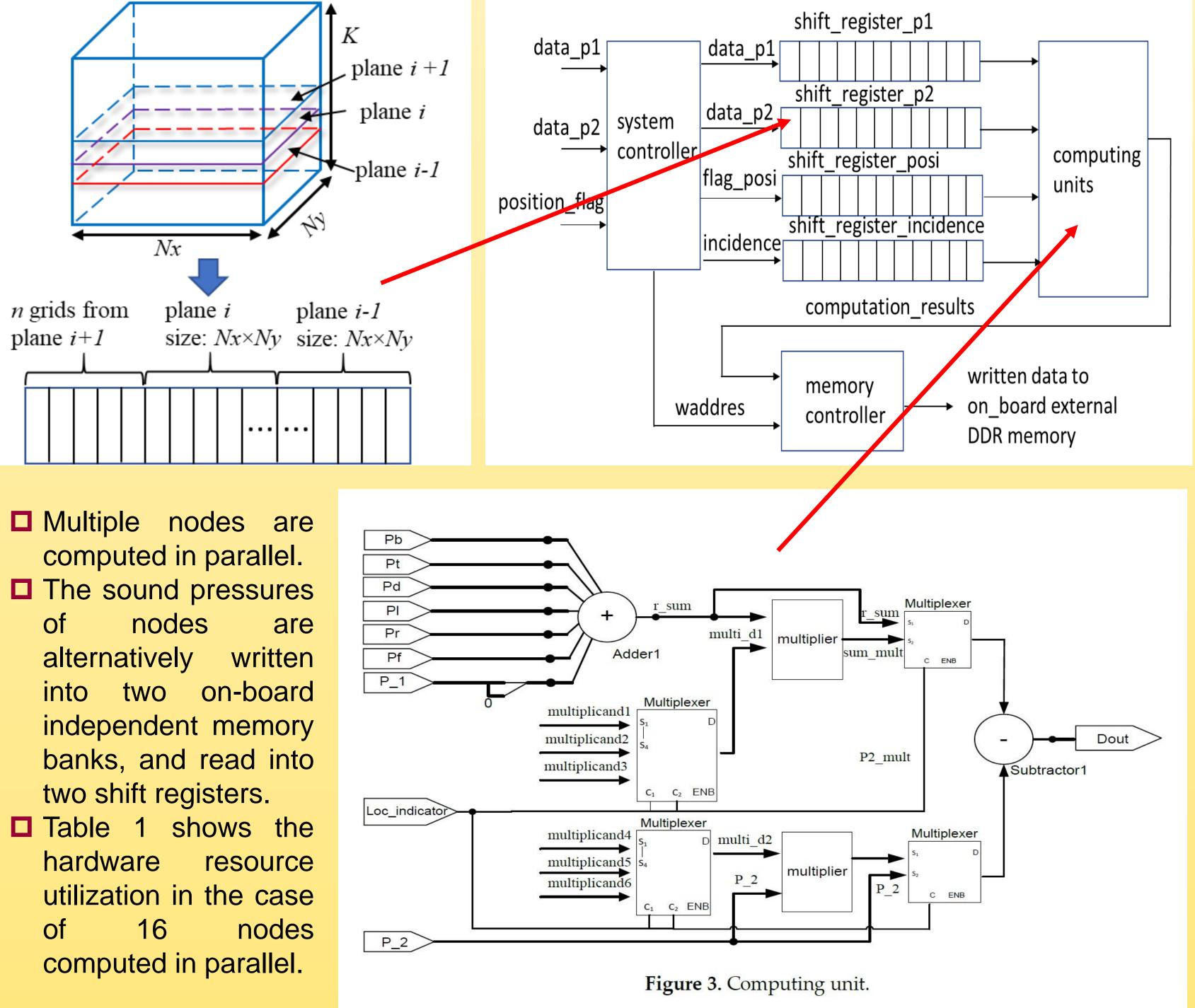
+ $P_{i,j+1,k}^{n} + P_{i,j,k-1}^{n} + P_{i,j,k+1}^{n} + 2P_{i,j,k}^{n}]$
- $D2 * P_{i,j,k}^{n-1}$

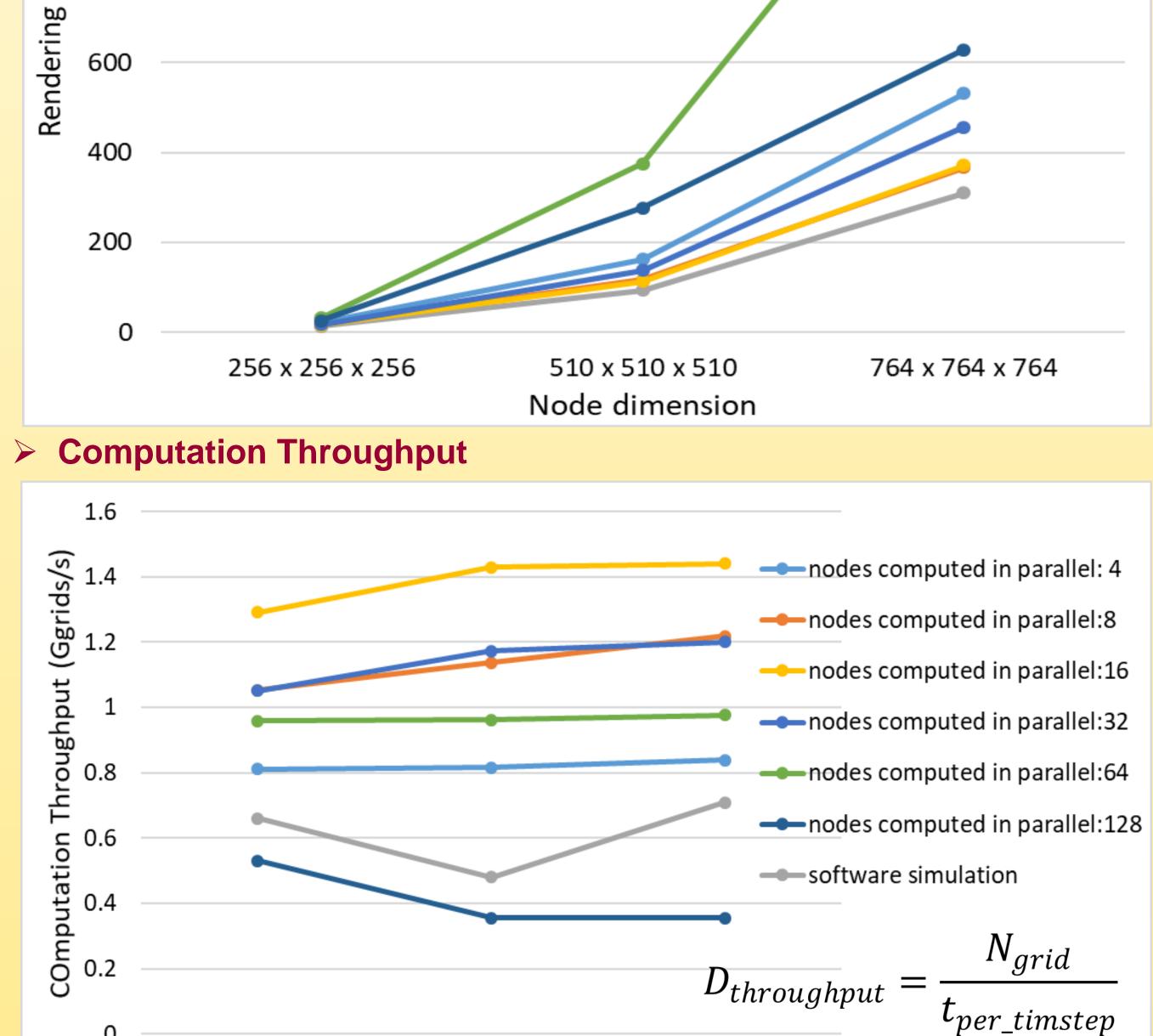
□ Six additions, one subtraction, and three multiplications are required to compute the sound pressure of a grid.

□ The parameters are selected according to the position of each grid.

 Table 1: Parameters

D2 Grid Position D1 1/4General 3R + 1R + 1Interior *R* + 3 2(R+3)R+1Edge R 8 5R - 1R+1Corner 5 - R2(5-R)


(iii) System Design and Implementation


The system is designed using OpenCL and implemented using the FPGA board DE5a-NET.

Technology Specification of Evaluation Environment

		FPGA	CPU			
Model		Arria 10 GX (10AX115N2F45E1SG)	Intel i7-7820X			
Cores		1518 DSP blocks	8 cores			
Clock frequency		267 MHz	3.6 GHz			
On-chip memory		6.25 MB block RAMs	L1 cache: 256 KB L2 cache: 8 MB L3 cache: 11 MB			
External RAMs		8 GB	128 GB			
OS		CentOS 7.2	CentOS 7.2			
Compiler		Intel SDK for FPGA 17.1	gcc 4.8.5			
Program. lang.		OpenCL	C++			
Rende	ring tin	le				
1400 —	Rendering time					
1200 —	nodes computed in parallel: 4 — nodes computed in parallel:8					
1200	—nodes computed in parallel:16					
1000 —	—nodes computed in parallel:64 —nodes computed in parallel:128					
time (s) 008 (s)	software simulation					
ti.						

The external large DDR memory is adopted to extend the simulated area, and High-speed and high-bandwidth on-chip memories is employed to implement a sliding-windowbased data buffering to reduce the required memory bandwidth and data access overhead between the rendering engine and on-board external memory. **A uniform computing unit** is developed to compute sound pressures of all nodes, and the related parameters are selected according to their positions. shift_register_p1

Table 1: H	lordword r	ACALIZA LI	
		E.S. () (

Logic utilization	DSP blocks	RAM blocks	Clock frequency
70701 (17%)	152 (10%)	891 (33%)	267 MHz

764 x 764 x 764 256 x 256 x 256 510 x 510 x 510 Node dimension

(v) Conclusions

A FPGA-based accelerator for sound field rendering is developed using high-level synthesis approach, in which the sliding-window-based data buffering scheme is applied to reduce the demand of memory bandwidth. Although the FPGA-based accelerator runs at 1/13 (0.267/3.6) of clock frequency and the memory size is about 1/16 (8/128) of those on the desktop machine, the FPGA-based accelerator doubles performance of the software simulations in the case of 16 nodes computed concurrently.

Acknowledgements

Thanks for Intel's donation of the FPGA board DE5a-NET and the related software tools through University Program. This work was supported by the I-O DATA Foundation and JSPS KAKENHI Grant Number JP19K12092.

International Conference on High-Performance Computing in Asia-Pacific Region, Jan. 15-17, 2020, Fukuoka, Japan.