
Accurate DGEMM using Tensor Cores

Method (Ozaki scheme)Introduction

Performance on Tesla V100

• We presented an accurate GEMM implementation with the DGEMM compatible interface using 
cublasGemmEx performed on Tensor Cores, which returns the correctly-rounded result on FP64 

• The performance depends on the input matrices. For example, for matrices initialized with 
random numbers having the dynamic range of 1E+9, we achieved approx. 1.2 TFlops.

• Although our implementation brings no performance advantage against cuBLAS DGEMM on 
GPUs that support fast FP64 (1/16 of Tensor Cores), it can be beneficial on hardware with 
limited FP64 support such as NVIDIA Tesla T4, whose FP64 performance is 1/256 of Tensor Cores.

• Our approach opens the way to utilize AI-oriented hardware, which supports limited FP64 
performance, for more general purposes and may impact the system co-design.

• The latest work including some extensions will be published soon.
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• As the demand for deep-learning increases, specialized hardware dedicated
to low-precision matrix-multiplication, which is the kernel of those tasks,
has been developing (e.g., NVIDIA Tensor Core, Google TPU, ARM
Matterhorn’s Matmul)

Performance Details

Mat. A Mat. B Mat. C Computation
cublasDgemm FP64 FP64 FP64 FP64
cublasGemmEx
(with Tensor Cores†)

FP16 FP16 FP32 FP32

our DGEMM FP64 FP64 FP64 Correctly-rounded

†Other operations and data formats are also supported through the same 
interface without Tensor Cores

Data and computation precisions on GEMM routines

• Environment: NVIDIA Tesla V100 GPU (PCIe-32GB): the theoretical 
peak performance (with 1.38 GHz) is 7065.6 GFlops on FP64 and 
113049.6 GFlops on Tensor Cores. CUDA 10.1, GPU driver version 
418.39. 

• Performance depends on the input (the number of split matrices 
depends on the range of the absolute values of the input matrices): 
matrices are initialized with (rand-0.5)×exp(φ×randn) to vary the 
floating-point range: 9.3E-10 – 5.0E-01 on φ = 0, 1.5E-09 – 1.6E+02 
on φ = 1, and 1.3E-09 – 4.8E+04 on φ = 2.
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• NVIDIA Tensor Cores are a special
processing unit that enables 4×4
matrix multiplication operations
on FP16 inputs with FP32
precision and return the result on
FP32. Besides, cuBLAS provides
the cublasGemmEx routine using
the above Tensor Core operation.

Tensor Core operation
with FP32 accuracy

• Markidis et al. [1] proposed a method to achieve nearly the SGEMM
equivalent accuracy on the matrices with the dynamic range supported on
FP16 using the cublasGemmEx routine.

• In this poster, we present an accurate DGEMM implementation, which has
the DGEMM compatible interface and can be computed using
cublasGemmEx on Tensor Cores

• Our implementation returns the correctly-rounded result: it supports bit-
level reproducibility and is compatible with other correctly-rounded
GEMMs such as ExBLAS [2] and OzBLAS [3]

• Our method is based on the Ozaki scheme [4], which is
an accurate matrix-multiplication algorithm based on
the error-free transformation for dot-product/matrix-
multiplication.

• In this study, we modified the original version of the
Ozaki scheme, which was designed to be computed
using DGEMM, to be computed using Tensor Cores
on FP64 input/output.

Ozaki scheme for Tensor Cores

This can be performed with 
cublasGemmEx using Tensor Cores

Spitting for a vector
(for matrix multiply, it is performed for inner-product wise direction)

NearSum [5] computes the 
correctly-rounded summation

ScaleUp computes element-wise 
scalar-multiplication of two matrices

uFP64 denotes the unit round-off of FP64: uFP64 = 2-53

uFP32 denotes the unit round-off of FP32: uFP32 = 2-24
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†2: The values for matrices A and B are shown with the same line. †2†3: The average of all blocks. 

†2 †3

†1:“Flops (on DP)” is the number of FP64 floating-point 
operations, corresponding to the standard DGEMM, per second

†1

Note: In this method, the 
number of split matrices 
depends on the range of 
the absolute values of the 
input matrices


