
Accurate DGEMM using Tensor Cores

Method (Ozaki scheme)Introduction

Performance on Tesla V100

• We presented an accurate GEMM implementation with the DGEMM compatible interface using
cublasGemmEx performed on Tensor Cores, which returns the correctly-rounded result on FP64

• The performance depends on the input matrices. For example, for matrices initialized with
random numbers having the dynamic range of 1E+9, we achieved approx. 1.2 TFlops.

• Although our implementation brings no performance advantage against cuBLAS DGEMM on
GPUs that support fast FP64 (1/16 of Tensor Cores), it can be beneficial on hardware with
limited FP64 support such as NVIDIA Tesla T4, whose FP64 performance is 1/256 of Tensor Cores.

• Our approach opens the way to utilize AI-oriented hardware, which supports limited FP64
performance, for more general purposes and may impact the system co-design.

• The latest work including some extensions will be published soon.

Conclusion Reference and Acknowledgement
[1] Markidis, S., Chien, S.W.D., Laure, E., Peng, I.B., Vetter, J.S.: NVIDIA Tensor Core Programmability, Performance
Precision. In: 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). pp. 522–
531 (2018)
[2] S. Collange, D. Defour, S. Graillat, R. Iakymchuk: Numerical reproducibility for the parallel reduction on multi- and
many-core architectures, Parallel Computing, Vol. 49, pp. 83-97, 2015.
[3] Mukunoki, D., Ogita, T., Ozaki, K.: Reproducible BLAS Routines with Tunable Accuracy Using Ozaki Scheme for
Many-core Architectures. In: 13th International Conference on Parallel Processing and Applied Mathematics
(PPAM2019) (2019), (to appear)
[4] K. Ozaki, T. Ogita, S. Oishi, S. M. Rump, “Error-free transformations of matrix multiplication by using fast routines
of matrix multiplication and its applications,” Numerical Algorithms, Vol. 59, No. 1, pp. 95-118, 2012.
[5] S. Rump, T. Ogita, S. Oishi, “Accurate floating-point summation part II: Sign, k-fold faithful and rounding to
nearest,” SIAM Journal on Scientific Computing, Vol. 31, No. 2, pp. 1269-1302, 2008.

* This research was partially supported by MEXT as “Exploratory Issue on Post- K computer” (Development of verified numerical
computations and super high- performance computing environment for extreme researches) and the Japan Society for the Promotion of
Science (JSPS) KAKENHI Grant Number 19K20286. This research used computational resources of Cygnus provided by Multidisciplinary
Cooperative Research Program in Center for Computational Sciences, University of Tsukuba.

1 RIKEN Center for Computational Science (JAPAN), 2 Shibaura Institute of Technology (JAPAN), 3 Tokyo Woman’s Christian University (JAPAN)
Daichi Mukunoki1, Katsuhisa Ozaki2, Takeshi Ogita3

HPC Asia 2020, January 14-16, 2020, Fukuoka, Japan

• As the demand for deep-learning increases, specialized hardware dedicated
to low-precision matrix-multiplication, which is the kernel of those tasks,
has been developing (e.g., NVIDIA Tensor Core, Google TPU, ARM
Matterhorn’s Matmul)

Performance Details

Mat. A Mat. B Mat. C Computation
cublasDgemm FP64 FP64 FP64 FP64
cublasGemmEx
(with Tensor Cores†)

FP16 FP16 FP32 FP32

our DGEMM FP64 FP64 FP64 Correctly-rounded

†Other operations and data formats are also supported through the same
interface without Tensor Cores

Data and computation precisions on GEMM routines

• Environment: NVIDIA Tesla V100 GPU (PCIe-32GB): the theoretical
peak performance (with 1.38 GHz) is 7065.6 GFlops on FP64 and
113049.6 GFlops on Tensor Cores. CUDA 10.1, GPU driver version
418.39.

• Performance depends on the input (the number of split matrices
depends on the range of the absolute values of the input matrices):
matrices are initialized with (rand-0.5)×exp(φ×randn) to vary the
floating-point range: 9.3E-10 – 5.0E-01 on φ = 0, 1.5E-09 – 1.6E+02
on φ = 1, and 1.3E-09 – 4.8E+04 on φ = 2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2048 4096 6144 8192

TF
lo

ps
 (o

n
D

P)

Problem Size (m=n=k)

DGEMMïTC (CR) on Tesla V100

phi=0
phi=1
phi=2

+×
FP16

FP16
FP32

FP32

a

b
c

d
FP32

• NVIDIA Tensor Cores are a special
processing unit that enables 4×4
matrix multiplication operations
on FP16 inputs with FP32
precision and return the result on
FP32. Besides, cuBLAS provides
the cublasGemmEx routine using
the above Tensor Core operation.

Tensor Core operation
with FP32 accuracy

• Markidis et al. [1] proposed a method to achieve nearly the SGEMM
equivalent accuracy on the matrices with the dynamic range supported on
FP16 using the cublasGemmEx routine.

• In this poster, we present an accurate DGEMM implementation, which has
the DGEMM compatible interface and can be computed using
cublasGemmEx on Tensor Cores

• Our implementation returns the correctly-rounded result: it supports bit-
level reproducibility and is compatible with other correctly-rounded
GEMMs such as ExBLAS [2] and OzBLAS [3]

• Our method is based on the Ozaki scheme [4], which is
an accurate matrix-multiplication algorithm based on
the error-free transformation for dot-product/matrix-
multiplication.

• In this study, we modified the original version of the
Ozaki scheme, which was designed to be computed
using DGEMM, to be computed using Tensor Cores
on FP64 input/output.

Ozaki scheme for Tensor Cores

This can be performed with
cublasGemmEx using Tensor Cores

Spitting for a vector
(for matrix multiply, it is performed for inner-product wise direction)

NearSum [5] computes the
correctly-rounded summation

ScaleUp computes element-wise
scalar-multiplication of two matrices

uFP64 denotes the unit round-off of FP64: uFP64 = 2-53

uFP32 denotes the unit round-off of FP32: uFP32 = 2-24

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 2048 4096 6144 8192

C
ou

nt
s

Problem Size (m=n=k)

Number of Split Matrices

 0

 50

 100

 150

 200

 250

 300

 350

 0 2048 4096 6144 8192

C
ou

nt
s

Problem Size (m=n=k)

Number of GEMMs

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 2048 4096 6144 8192

TF
lo

ps
 (o

n
TC

)

Problem Size (m=n=k)

Tensor Core Throughput
phi=0
phi=1
phi=2

 0

 20

 40

 60

 80

 100

1024
2048

3072
4096

5120
6144

7168
8192

%

Problem size (m=n=k)

phi=0

 0

 20

 40

 60

 80

 100

1024
2048

3072
4096

5120
6144

7168
8192

%

Problem size (m=n=k)

phi=1

 0

 20

 40

 60

 80

 100

1024
2048

3072
4096

5120
6144

7168
8192

%

Problem size (m=n=k)

phi=2
SplitA
SplitB

Comp(TC)
NearSum

Others

Execution Time Breakdown

†2: The values for matrices A and B are shown with the same line. †2†3: The average of all blocks.

†2 †3

†1:“Flops (on DP)” is the number of FP64 floating-point
operations, corresponding to the standard DGEMM, per second

†1

Note: In this method, the
number of split matrices
depends on the range of
the absolute values of the
input matrices

