
Communication-Hiding Pipelined BiCGStar-Plus Method and Its

Application to GPU-based Numerical Simulation of Blood Flow

HUYNH Quang Huy Viet & SUITO Hiroshi
Advanced Institute for Materials Research, Tohoku University

{hqhviet,hiroshi.suito}@tohoku.ac.jp

1. Introduction

One of the widely used methods for solving linear equation sys-
tems is the BiCGStab iterative algorithm, which uses an initial
solution and creates a sequence of improved approximate solu-
tions. The BiCGStab algorithm is built from three basic opera-
tions: inner-product, linear combination (the addition of a scalar
multiple of one vector to another vector), and matrix-vector prod-
uct. In the parallel implementation of the BiCGStab algorithm,
one main problem that causes delays to the whole process is
the inner product operation, which requires a global synchro-
nization phrase for one global communication operation to col-
lect the scalar partial sums in each processor to one processor,
and one global communication operation for distributing the re-
sult to all processors. Time for inner product computation will
dominate the time of the whole algorithm as the number of pro-
cessors increases. Recently, the new variants of the BiCGStab
algorithm with hiding communication latency of computing in-
ner products by overlapping inner-product computations with a
matrix-vector computation have been proposed by Cools and
Vanroose [1]. On parallel computers, this method can gain
higher scalability property than the standard BiCGStab method.
Among generalized algorithms of the BiCGStab method such
as GPBiCG [4], BiCGSafe, BiCGStar-plus [2, 3], BiCGStar-plus
has good convergence behavior. In this poster, similar to the
work of Cools and Vanroose, we propose a variant of BiCGStar-
plus named Pipelined BiCGStar-plus that hides communication
latency. To verify the effectiveness of the proposed algorithm for
real problems, we apply it to blood flow simulation.

2. The Proposed Pipelined BiCGStar-plus Algorithm

Algorithm 1 BiCGStar-plus
1: Let x0 is an initial guess,
2: Choose r∗0 such that (r∗0, r0) 6= 0, e.g., r∗0 = r0,
3: Set p0 = r0, Ap0 = Ar0,y0 = 0,
4: for i = 0, 1, ... do
5: if ||ri||/||r0|| ≤ ε stop,
6: Compute Ari,
7: Define ρi := (r∗0, ri), σi := (r∗0,Ari), τi := (r∗0,Awi−1),
8: Define µi := (Ari,Ari), νi := (Ari, ri), λi := (yi,yi),
9: Define ωi := (Ari,yi), ξi := (yi, ri),

10: if i = 0 then
11: βi = 0, αi = ρi/σi,
12: ζi = νi/µi, ηi = 0,
13: else
14: βi = (αi−1/ζi−1)(ρi/ρi−1),
15: αi = ρi/(σi + βiτi),
16: ζi = (λiνi − ωiξi)/(µiλi − ω2

i),
17: ηi = (µiξi − ωiνi)/(µiλi − ω2

i),
18: end if
19: si = yi + βici−1,
20: pi = ri + βiwi−1,
21: Api = Ari + βiAwi−1,
22: vi = ζiri + ηiti,
23: zi = ζiAri + ηiyi,
24: ci = ζiApi + ηisi,
25: Compute Aci,
26: wi = pi − ci,
27: Awi = Api −Aci,
28: ti+1 = vi − αici,
29: yi+1 = zi − αiAci,
30: xi+1 = xi + vi + αiwi,
31: ri+1 = ri − zi − αiAwi,
32: end for

The proposed Algorithm 2 is mathematically equivalent to the
original Algorithm 1 [3] in the exact arithmetic. However, the
strategy of hiding communication can be applied to Algorithm 2,
but not to Algorithm 1. In Algorithm 2, the inner product com-
putation (lines 11 through 19) can be performed simultaneously
or in a manner that overlaps with the matrix-vector computation
(line 20). A detailed derivation of Algorithm 2 will be presented
in a future paper.

Algorithm 2 Pipelined BiCGStar-plus
1: Let x0 is an initial guess,
2: Compute r0 = b−Ax0,
3: Choose r∗0 such that (r∗0, r0) 6= 0, e.g., r∗0 = r0,
4: Initialize e0 = Ar∗0,
5: Initialize y0 = g0 = q0 = o0 = 0,
6: for i = 0, 1, ... do
7: if ||ri||/||r0|| ≤ ε stop,
8: Define ρi := (r∗0, ri), σi := (r∗0, ei), τi := (r∗0,ui−1),
9: Define µi := (ei, ei), νi := (ei, ri), λi := (yi,yi),

10: Define ωi := (ei,yi), ξi := (yi, ri),
11: if i = 0 then
12: βi = 0, αi = ρi/σi,
13: ζi = νi/µi, ηi = 0,
14: else
15: βi = (αi−1/ζi−1)(ρi/ρi−1),
16: αi = ρi/(σi + βiτi),
17: ζi = (λiνi − ωiξi)/(µiλi − ω2

i),
18: ηi = (µiξi − ωiνi)/(µiλi − ω2

i),
19: end if
20: Compute Aei,
21: si = yi + βici−1,
22: f i = gi + βidi−1,
23: pi = ri + βiwi−1,
24: qi = ei + βiui−1,
25: oi = Aei + βili−1,
26: vi = ζiri + ηiti,
27: zi = ζiei + ηiyi,
28: hi = ζiAei + ηigi,
29: ci = ζiqi + ηisi,
30: di = ζioi + ηif i,
31: Compute Adi,
32: wi = pi − ci,
33: ui = qi − di,
34: li = oi −Adi,
35: ti+1 = vi − αici,
36: yi+1 = zi − αidi,
37: gi+1 = hi − αiAdi,
38: xi+1 = xi + vi + αiwi,
39: ri+1 = ri − zi − αiui,
40: ei+1 = ei − hi − αili,
41: end for

3. Simulation of Blood Flow

We consider the following dimensionless form of the Navier-
Stokes equations in a spatial domain Ω ⊂ R3:

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p
∂xi

+
1

Re

∂

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
in Ω, (1)

∂ui
∂xi

= 0 in Ω. (2)

Here, we adopt the summation convention on repeated indices
that have values 1, 2, and 3. The x, y, z axes in the Cartesian
coordinate system are designated as xi, i = 1, 2, 3. Here, ui rep-
resents the component of the velocity vector field u in the ith

dimension, p stands for the scalar pressure field, and Re de-
notes the Reynolds number.
Let us discretize the spatial domain Ω by elements Ωe, e =
1, 2..., nel. Let Su,Vu be the trial and test function spaces for
velocity and Sp,Vp (Vp = Sp) be trial and test function spaces
for pressure. The stabilized finite element formulation of the
equations (1)-(2) with the SUPG/PSPG stabilization terms can
be expressed as follows [5]: Find u ∈ Su and p ∈ Sp such that
∀w ∈ Vu and ∀q ∈ Vp:∫

Ω
wi

(
∂ui
∂t

+ ūj
∂ui
∂xj

)
dΩ−

∫
Ω

∂wi
∂xi

pdΩ +

∫
Ω

1

Re

∂wi
∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
dΩ

+

nel∑
e=1

∫
Ωe

τ ūk
∂wi
∂xk

(
∂ui
∂t

+ ūj
∂ui
∂xj

+
∂p

∂xi

)
dΩ = 0,

(3)∫
Ω
q
∂ui
∂xi

dΩ +

nel∑
e=1

∫
Ωe

τ
∂q

∂xi

(
∂ui
∂t

+ ūj
∂ui
∂xj

+
∂p

∂xi

)
dΩ = 0,

(4)

where τ is the SUPG/PSPG stabilization parameter [5].
The discretization of the Navier-Stokes equation by stabilized fi-
nite element method leads to a large and sparse non-symmetric
system of linear equations. This linear equation system is
solved by using by the proposed Pipelined BiCGStar-plus al-
gorithm. To implement the proposed algorithm on the GPU plat-
form, we used the Nvidia’s GPU linear algebra libraries cuS-
PARSE and cuBLAS to implement four basic vector operations
of the algorithm: SpMV (sparse matrix-vector product,), DOT
(inner product), AXPY (add a multiple of one vector to another),
and SCAL (scaling a vector by a constant).

4. Performance Results

Figure 2: Triangle surface and tetrahedral volume meshes

The computational conditions are as follows:

• Intel(R) Xeon(R) CPU E5-2640 v4, 2.40GHz

•GPU NVIDIA Tesla P100,

•Cuda 10.1,

•Double precision,

• Stopping criteria: ||ri||/||b|| < 10−9.

Inlet speed is set to 0.5 m/s. The time step is set to a time
interval of 0.002 seconds for a cycle of 50 steps.

Figure 3: The result flow pattern

The computation was performed successfully on GPU and CPU.
Table 1 shows a speed-up ratio and execution times of GPU and
CPU computations. GPU execution is significantly faster than
CPU execution.

Table 1: Execution time

Mesh Size GPU CPU
#Node #Element Time Time

32242 173439 572 s 1158 s

Although the above numerical results show the effectiveness of
the proposed algorithm, the possibility of simultaneous calcula-
tion of the inner products and the matrix-vector product has not
been considered at the current implementation stage. This will
be carried out in the near future.

5. Conclusions

We propose the Pipelined BiCGStar-plus algorithm that can
hide the latency of inner product computation by matrix-vector
computation, and show its application in GPU-based simulation
of blood flow in the aorta of the human body. In future work,
we will further improve the current implementation by exploring
the possibility of simultaneous computation of the inner products
and the matrix-vector product.

Acknowledgment

This work was supported by JST CREST Grant Number JP-
MJCR15D1, Japan. The lead author would like to thank Pro-
fessor Emeritus Seiji Fujino at Kyushu University for the support
and guidance on the BiCGStar-plus method.

References

[1] S. Cools, W. Vanroose, The communication-hiding pipelined
BiCGStab method for the parallel solution of large un-
symmetric linear systems. Parallel Comput. 65, pp. 1—20,
(2017).

[2] S. Fujino and K. Murakami, A Parallel Variant of BiCGStar-
Plus Method Reduced to Single Global Synchronization, Asi-
aSim 2013, pp. 325–332, (2013).

[3] S. Fujino and K. Iwasato, An Estimation of Single-
Synchronized Krylov Subspace Methods with Hybrid Paral-
lelization, Proceedings of the World Congress on Engineer-
ing Vol I, (2015).

[4] S.L. Zhang, GPBi-CG, Generalized product-type methods
preconditionings based on BiCG for solving nonsymmetric
linear systems, SIAM J. Sci. Comput., pp. 537–551, (1997).

[5] T.E. Tezduyar, Stabilized finite element formulations for in-
compressible flow computations, Advances in Applied Me-
chanics 28, pp. 1–44, (1992).

HPC Asia 2020 - January, 15-17, 2020, Fukuoka, Japan.

