
Implementation and Performance Evaluation of
Parallel OpenACC Climate Code City-LES on GPU Cluster
Daisuke Tsuji 1, Hiroto Tadano 3, Taisuke Boku 3, Ryosaku Ikeda 3,*, Takuto Sato 2, Hiroyuki Kusaka 3

1) Graduate School of Systems and Information Engineering, University of Tsukuba, Ibaraki, Japan.
2) Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan.
3) Center for Computational Sciences, University of Tsukuba, Ibaraki, Japan.
*) Present affiliation is Weathernews Inc.

City-LES
• City-LES is climate simulation code based on Large
Eddy Simulation

• It can simulate urban area with buildings, street-side
tree plantations and dry-misters

• Has been developing by Center for Computational
Science (CCS), University of Tsukuba

• 2D domain decomposition by MPI on X-Y plane
• Applied OpenMP to Z dimension

OpenACC Acceleration
• At first, we applied CUDA Fortran to City-LES
• It is required certain amount of data movement
between CPUs and GPUs when a partial code of City-
LES is ported to CUDA Fortran because some parts
are still executed on GPUs

• It is need to implement entire computation parts of
City-LES on GPUs completely for removing data
movements between CPUs and GPUs

• However a small computation part is not cost-
effective to implement on GPU

• So we decided to apply OpenACC for them to
minimize the coding complexity

• We have developed a GPU-ready version of City-LES
removed data movement as much as possible

Experiment Environment

CPU Intel Xeon Gold 6126

CPU Memory DDR4 192GB (96 GB / CPU)

GPU NVIDIA Tesla V100 (PCIe)

InfiniBand Mellanox ConnectX-6 HDR100

Inter-node
Network

100 Gbps x 4 x 80 = 4 GB/s (full bisection
bandwidth)

Host OS CentOS 7.6

Host Compiler PGI Compiler 19.1

CUDA Version CUDA 10.1

Problem Size 256 x 256 x 128 / process and 200 time-
steps

• Cygnus Hybrid Cluster at CCS for
experiment

• 2 Intel Xeon CPUs, 4 NVIDIA V100 GPUs
and 2 additional Intel Stratx10 FPGAs

• One IB HCA per GPU
• Deneb : 48 CPU + GPU nodes
• Albireo : 32 CPU + GPU + FPGA nodes
• Using only GPUs and CPUs on this
implementation (no FPGA)

• Using GPUDirect for MPI communications
on GPUs

• Up to 32 nodes for scaling performance
experiment

Parallel Execution (Strong Scaling)

Parallel Execution (Weak Scaling)

Conclusion Future Work

ACKNOWLEGEMENT

Z

Y

X

This research is partially supported by " Communication-Computation Unified Supercomputing" project under MEXT’s "Next Generation Supercomputer R&D" program, Multi-Disciplinary
Collaboration Research Program of CCS, University of Tsukuba, and Collaborative Research between CCS and Weathernews Inc.

• Strong scaling of CPUs and GPUs from 4 nodes (16 GPUs) to 32 nodes (128 GPUs)
• 4 MPI processes run on each node and each process runs 6 OpenMP threads
• CPU parallel efficiency with 32 nodes is 86 % of 4 nodes, while GPU parallel efficiency is 40 %
• GPU running time with 16 nodes is 18.1 [s] and speed up to 3.62x from 4 nodes 70.0 [s]
(efficiency is 91 %), however it is 5.77x with 32 nodes 11.0 [s](72 %)

• MPI p2p communication time with 32 nodes is 10.3 [s] (43 % of total), while the time of 4
node is 10 % of total one

• As increasing scale, problem size of each GPU is too small to accelerate running on GPUs and
pack-unpacking cost of halo communications becomes heavy due to stride access, therefore
the parallel efficiency becomes worse

• In other hand, data movement time between CPUs and GPUs is decreased in reverse-
proportionally at scaling

• Conclusion: target problem size limits the strong scaling performance up to 4x from 4
nodes case

Single node Performance
441

76

0
50

100
150
200

250
300
350

400
450
500

2CPU 2GPU

Ex
ec

ut
io

n
tim

e
[s

]

CPU <- GPU memcpy
CPU -> GPU memcpy
MPI p2p
MPI collective
GPU run
CPU run

• Using 2 CPUs and 2 GPUs on single
node with 2 MPI processes

• All GPU code is written in OpenACC
• Execution time with breakdown for CPU
and GPU running time, data movement
between CPU and GPU, and p2p and
collective communications on MPI

• GPU accelerates the performance up to
5.79x to CPU-only case

• Data movement time is minimized by
implementing all computation on GPUs

2CPU VS 2GPU on Cygnus.

Strong scaling on Cygnus.

• We apply OpenACC Fortran to City-LES for
accelerating the computation performance

• OpenACC easily leads full porting of
computation part from CPU to GPU even
though with low parallelism resulting to great
reduction of CPU-GPU data movement cost

• GPU parallel efficiency is less than that of
CPU due to halo communications, however
GPU computation time keeps 72 % of parallel
efficiency up to 128 GPUs

• In weak scaling, GPU has good efficiency due
to GPUDirect communication through network
cards for each GPU

• Weak scaling of CPUs and GPUs from single node (4 GPUs) to 32 nodes (128 GPUs)
• 4 MPI processes run in each node and each process runs 6 OpenMP threads
• GPU City-LES execution time increase is limited up to 1.16x on 32 nodes from single node
and the efficiency is kept to 86 % which is almost the same efficiency compared with CPU-
only implementation

• MPI communication time increase at scaling, however GPU communication time is negligible
thanks to high performance IB HCA with 100 Gbps for each GPU on node (4 IB HCA for 4
V100 GPUs)

• Data movement time between CPUs and GPUs is almost the same in any scale
• Computation time on CPUs and GPUs are also almost the same in each case
• Conclusion: Our implementation of GPU-ready City-LES has very high performance on
weak scaling

• We do not enable heavy functions such as
computing buildings yet in this research in
order to make the problem easier, so we will
apply OpenACC to these parts and evaluate
performance in the case of enabled

• We will evaluate CPU and GPU performance in
real problem simulation

• In real problem case, more GPUs will be
needed due to small memory capacity of
GPU, so we need to experiment bigger scale
and evaluate the performance

• More optimization may be needed to
OpenACC instead of simple OpenACC
directives for more performance optimization

740

79

770

78

772

78

822

80

828

85

841

92

0

100

200

300

400

500

600

700

800

900

1000

CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU

1node 2node 4node 8node 16node 32node

Ex
ec

ut
io

n
tim

e
[s

]

CPU run GPU run MPI collective MPI p2p CPU -> GPU memcpy CPU <- GPU memcpy

Weak scaling on Cygnus.

780

78

412

50

203

35
113

24
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

100

200

300

400

500

600

700

800

900

1000

CPU GPU CPU GPU CPU GPU CPU GPU

4 node 8 node 16 node 32 node

Pa
ra

lle
l e

ffi
ci

en
cy

 [%
]

Ex
ec

ut
io

n
tim

e
[s

]

CPU run GPU run MPI collective MPI p2p
CPU -> GPU memcpy CPU <- GPU memcpy CPU parallel efficiency GPU parallel efficiency

Lo
w

er
 is

 b
et

te
r

Lo
w

er
 is

 b
et

te
r

Hi
gh

er
 is

 b
et

te
r

subroutine parent()
implicit none
. . .

!– Small subroutines be run on
!- GPUs to remove data movements
call child_A()
call chile_B()
call child_C()

!– Loops be wanted to accelerate
do k = 1, ksize

do j = 1, jsize
do i = 1, isize

. . .
enddo

enddo
enddo

end subroutine parent

CPU

PCIe network (switch)

G
P
U

G
P
U

FPGA

HCA HCA

Inter-FPGA
direct network
(100Gbps x4)

Network switch
(100Gbps x2)

CPU

PCIe network (switch)

G
P
U

G
P
U

FPGA

HCA HCA

Inter-FPGA
direct network
(100Gbps x4)

SINGLE
NODE
(with FPGA)

Network switch
(100Gbps x2)

Source : CCS. https://www.ccs.tsukuba.ac.jp/press_cygnus_20190326/

