Predicting the convergence of an iterative method from matrix images using CNN

Ryo Ota and Hidehiko Hasegawa

University of Tsukuba, Japan

Mail to: s1411506@klis.tsukuba.ac.jp

Introduction

- Sometimes the iterative method converges within n (the dimension of matrix), but sometimes it does not converge at all.
- If the likelihood that the iterative method would converge could be roughly predicted in advance, a better alternative solver could be applied if that solver is unlikely to achieve convergence.
- Convolutional Neural Network (CNN) is producing remarkable progress within the field of image recognition and computer vision.
- If sparse matrices are converted to images, it would be possible to predict the convergence using CNN.

We tested predicting the convergence of BiCG method using CNN.

Our Model

Matrix to Image

We used 8-bit grayscale images because it is easy to classify grayscale images compared to color images.

- Grayscale values range 0 (black) to 255 (white).
- Image size is changed among four option 28×28 , 56×56 , 112 \times 112, and 224 \times 224 pixels.
- We used SuiteSparse [1] method and sigmoid method for their conversion.

Algorithms

Distribution

- We use 875 of 982 non-symmetric real square matrices stored in the SuiteSparse Matrix Collection [2].
 - The matrix dimension ranges from 5 to 4453150, and sparsity varies from 0.000006 % to 76 %.
 - The absolute value of elements of A are distributed from 10^{-324} to 10^{28} .
 - After scaling, the absolute value of elements of CA are distributed from 10^{-324} to 10^{302} .

Table1. Number of matrices in each class

	Converge	Not-converge	Total	$(1 (a_{ii} = 0))$
Original A	235	640	875	$c_{ii} := \left\{ a_{ii} ^{-1} (a_{ii} \neq 0) \right\}$
With scaling CA	289	586	875	

Table2. Distribution of grayscale values in 28×28 pixels, except zero elements

	SuiteSparse method		sigmoid method		
	μ	σ	μ	σ	
Original A	136.7	81.03	135.0	47.73	
With scaling CA	136.5	79.34	135.1	47.14	

- Distribution of grayscale values changed little by scaling.
- Grayscale values of SuiteSparse method distributed roughly.
- Grayscale values of sigmoid method were distributed in narrow range.

Experiments

- Dataset F consists of 235 of convergence and non-convergence matrices. Dataset G consists of all matrices (converge 235 and not-converge 640). Dataset H consists of all matrices after scaling (converge 289 and notconvergence 586).
- 5-fold cross validation was used.

Table3. Confusion Matrix

$\overline{}$	Prediction			
	/	Not-converge	Converge	$Accuracy = \frac{TN + TP}{TN + FN + FP + TE}$
True	Not-converge	True Negative (TN)	False Negative (FN)	111 + 111 + 11
	Converge	False Positive (FP)	True Positive (TP)	

Table4. Average accuracy by 5-fold cross validation (%)

Method	Dataset	28×28	56×56	112×112	224×224	
SuiteSparse	F	80.0	78.9	79.7	78.9	
	G	86.1	84.9	81.9	82.1	
	Н	84.0	85.3	83.9	83.4	
sigmoid	F	82.7	77.6	81.2	77.0	
	G	84.1	83.3	82.6	79.3	
	н	81.6	83.1	83.1	81.8	

- 1. Average accuracy achieved around 80 %.
- 2. Dataset G was superior to the dataset F in all options.
- The larger the image size was, the lower the accuracy became. 3.
- 4. The average accuracy of dataset G and H didn't change so much.
- 5. The average accuracy of SuiteSparse method and sigmoid method were about the same and mistakes were duplicated.
- In case of convergence condition set in 10^{-10} , average accuracy 6. achieved 80 %.

Reterences

[1] Tim Davis. SuiteSparse: A suite of sparse matrix software. http://faculty.cse.tamu.edu/davis/suitesparse.html [2] Tim Davis, Yifan Hu, and Scott Kolodziej. The SuiteSparse Matrix Collection. https://sparse.tamu.edu.