N\ VR AT AT "RY = AN
Performance Tuning of Deep Learnlng Framework

Chainer on the K computer Ol

Akiyoshi KURODA?, Kiyoshi KUMAHATA?, Syuichi CHIBA?, Katsutoshi TAKASHINA? and Kazuo MINAMI? O
1R-CCS, Operations and Computer Technologies Division, Application Tuning Development Unit. RIKZN R'ccs
ZFUJITSU LIMITED.

N/ e N\ AT S W N A

Recently GPUs has become a popular platform for executing deep learning (DL) workloads. We revisit the idea of doing DL on CPUs, especially massively parallel
CPU clusters (supercomputers). In anticipation of deployment of the Supercomputer Fugaku with much more DL capable CPUs, we investigate which
optimizations can be already done using the K computer, current leadership computing facility and predecessor to the Supercomputer Fugaku. We use Chainer
asa deep Iearnmg framework of choice.

2. Characteristic of Chainer

1. Introduction

Table.1 ASIS Chainer Profiler (cProfile) result on the K computer.

— Profiling results of Chainer using cProfile+gprof2dot are - Original Chainer Ver.4.4.0 profile for MNIST sample (unit=1,000, epoch=20) on the K computer
[Flgl][TabIel] . ncalls tottime ~ percall cumtime percall filename:lineno(function)

¢ Total execution time of 10.311 s breaks down as follow: (1.) 72000 8,405.11 0.117 8,421.99 0.117 optimizers/adam.py:91(update_core_cpu)

— Adam optimizer [adam.py]: 84%@ @02000 1,122.61 0.011 1,122.61 0.011 {method 'dot' of 'numpy.ndarray' objects}
_ numpy.dot called from "near.py: 11%®' 28000 46.44 0.002 47.38 0.002 activation/relu.py:29(forward_cpu)

218000 34.60 0.000 1,421.38 0.007 function_node.py:201(apply)

— Other parts (ReLU and Python control and so on.): 5%.
P (Y) ° 24000 30.97 0.001 32.05 0.001 activation/relu.py:96(forward_cpu)

3. Adam optimizer
— Optimizer consumed 84% of execution time and ran with 0.04% efficiency as measured using Fujitsu hardware counters.
— The dominant operation is square root of matrix elements called from NumPy for filter update.

— This function in NumPy was implemented with automatic C language code generation, and thus difficult to tune directly..
— We rewrote all calculations in Adam using vectorized Fortran library and SIMD conversion and software pipelining (SWPL).

— In filter update calculations many values happened to be close to zero(denormalized number), raising underflow exceptions.
We recompiled Python with an option forcing to truncate such numbers to zero.

— We have also applied SWPL and masked SIMD using Fortran Library to implement ReLU activation function.

numpy.dot GEMM convolution Line# Hits Time Per Hit % Time Line Contents
— achieves only 7.76% peak performance. 104 720044824810 622.6 21.2m+=(1 - hp.betal) * (grad - m)
— NumPy was compiled against vectorized (using SSI) but 105 72004366618.0 606.5 20.6 v += (1 - hp.beta2) * (grad * grad - v)
single-threaded Fujitsu BLAS Iibrary i 7200 7337882.0 1019.2 34.6 param.data -= hp.eta * (self.Ir * m / (numpy.sqrt(vhat) + hp.eps) +

113 7200 4864633.0 675.6 23.0 hp.weight_decay_rate * param.data)

— We modified numpy.dot to call multi-threaded version.

. Fig.2 Line costs of Adam optimizer region.
Table.2 numPy.dot calculation.

subroutine calculation gemm size(M,N,K) #call elapse [s] efficency %
linear.py:33(forward) y=x.dot(W.T) [(100, 1000, 784), (100, 1000, 1000), (100, 10, 1000) x42000 429.3[s] 9.20%
linear.py:96(forward) gx=gy.dot(W) [(100, 1000, 10), (100, 1000, 1000) x24000 283.2[s] 6.73%
4. other cost linear.py: 145(forward) gW=gy.T.dot(x) [(10, 1000, 100) , (1000, 1000, 100), (1000, 784, 100) x36000 380.6[s] 8.90%
Fig.1 Ceﬁ/éraph sample of Chainer ~ — The ratio of the other costs such as RelU calculations and Python control regions in ASIS Chainer is small (4.5%).
on the K computer — These regions almost not vectorized (SIMD) and parallelized.

Table.3 Elapsed time of tuning stage. We adopted FlatMPI on these regions for threads para”e“mt'on' Table.5 Profiler result after all tuning.

name tuning |GEMM Adam other total . . i i -
g TRECR] S5 T TN Table.4 Performance efficiency of GEMM and sqrt. Tuned Chainer Ver.4.4.0 profile for MNIST sample (unit=1,000, epoch=20) on the K computer

underflow Kfast(Kns) '990'2 1'681.9 372'2 3'044'4 name | tuning GEMM sqrt ncalls tottime percall cumtime percall filename:lineno(function)

GEMM thread 236.5 8,386.9 336.9 8,960.2 original 7.76% 0.04% 102000 166.80 0.002 166.80 0.002 {method 'dot' of 'numpy.ndarray objects}

o 9
Adam Fortranlib.| 1,052.6 7807 439.6 2,272.9 underflow | Kfast(Kns) | 9.31% 0.19% 72000 6073 0.001 104.47 0.001 optimizers/adam.py:53(adam_kro2)
a0 1949 713 3590 5352 GEMM thread 38.81% 0.48%)
- a . . o, % 218000 38.49 0.000 440.19 0.002 function_node.py:201(apply)
FlatMPI (8proc.) 131.9 406 78.6 283.4 Adam FortranLib. 8.76% 0.92% - i :
all 47.03% 17.89% 12000 18.17 0.002 292.06 0.024 variable.py:968(_backward_main)
5. Result FlatMPI (8proc.) 70.05% 18.64% 364000 16.73 0.000 21.16 0.000 numpy/ctypeslib.py: 196(from_param)

— Speedups by each tuning step [Fig.3]:
e SSL Il thread parallel BLAS effect in numpy.dot: 1.15x
e SWHPL effect by Fortran library for Adam's sqrt: 4.54x
e floating point underflow control effect: 3.38x * FlatMPI effect: 2.24x
e Total speedup: 36.4x

6. Parallelization by the ChainerMN

We also tried to evaluate ChainerMN-1.3.0 and released it to
the K computer users as an R-CCS software.

— Scalability of ChainerMN on the K computer is [Fig.5].
* Measurement conditions: MNIST sample (unit=1000, epoch=20

— Efficiency improvements [Table 4]: - lepoch=600iter).
* Performance efficiency of the numpy.dot: 7.76%->38.81%->47.03%->70.05% (9.03x) Although it can be measured even using 600 proc. or more, we
* Performance efficiency of the Adam optimizer: 0.04%-> 0.92%->17.89%->18.64% (511x) must take care of recurrence and consistency of results.
* It scales well up to about 200 processes for this MNIST sample
Performance tuning of Chainer Cost distribution of Chainer problem.
elapsed[s] on the K computer elapse % on the K computer * It became possible to calculate in 10 seconds for MNIST sample
12,0000 100%] — " on the K computer.
90% S e Scalability of Chainer

10,0000 4652 porw a0% | %éz:AmM :::;:‘l[s] on the K computer

336.9 B Adam
& CGEMM 70% | g B ||||HH||| ——lreeBecceg—el---2--0
8,000.0 -+ A 5
% 4,096.0
\ / \ oo% ==& ChainerMN
6,000.0 -+ \ /
4,000.0 ——\

509 | : ~ @~ Chainer
1,024.0
40% +— —
2,000.0 —%—
Fss0.2

7

Optimized
30% T 256.0
- N
4396, BB
413 40.4
10% -+ 64.0
meT] o5 s 786 = \\/‘—_.
0.0 . . ~1o49 ' 1319 0%

original underflow GEMM Adam 19all p08t01 original all FlatMPI 16.0
Fig.3 Elapsed time on the all tuning step. Fig.4 The change of cost distribution by the tuning effect.
7. Conclusion 40 : ‘ : ‘
There are some limitations on the use of Chainer on the K computer. It is necessary to prepare the learning ! 4 % oroc. 26 1024
data beforehand and to stage-in the data to an appropriate storage system. Moreover, since Python is in Fig.5 The scalability results of ChainerMN.

the shared storage, it takes time to load the library. However, it was confirmed that we can use the K
computer for deep learning sufficientlyas well as GPU. Now, we are preparmg for the use of deep learnmg

calcula ns on the F il LR _
% i X 48 > 0% _,,!"}5 o) It
T QPCA uuw‘ URUQUSES PPN

