Background: Task-based and loop-based

Recently, task-based execution has been attracting attention, because it can reduce the waiting time from synchronization.
- Loop-based:
 - Exploit data parallelism, and execute the same computation on different data.
 - Use barrier between jobs to make sure the loop execution is already finished.
- Task-based:
 - Exploit task parallelism, and execute different tasks in parallel.
 - Use tasks and their dependencies to control the order of task execution.
A directed acyclic graph (DAG) is used to express the dependency.

High Performance ParalleX (HPX)

- A runtime system for parallel computing based on the partitioned global address space (PGAS) model.
- Provides a C++ class library to describe tasks and their dependencies.

Proposed Approach

- **STEP 1: Choose the critical task.**
 - Find the critical path in the DAG.
 - The longest path in the DAG, which has more tasks than the other paths.
 - Find the critical task in the critical path.
 - The task(s) that have the highest number of occurrences in the critical path.

- **STEP 2: Decoupled task queues and thread pools.**
 - A higher priority is given to critical tasks in the critical task queue.
 - Tasks from the critical task queue go to the critical thread pool, and the other tasks go to the default thread pool.
 - Whenever a worker thread becomes idle, an HPX thread is retrieved from the thread pool, and assigned to the worker thread.

- **STEP 3: Using a NUMA-balanced method for mapping tasks.**
 - Different from the default thread mapping method, the NUMA-balanced method will assign threads evenly to cores.
 - More efficient by making better use of the resources.

Task Priority Control

- All tasks are managed using a single default task queue.
- Tasks will be assigned to HPX threads in a thread pool in FIFO, every task has the same execution priority.

Problem & Motivation

- The newest version of OpenMP supports task priority, resulting in higher performance.
- For multi-node parallel processing systems such as HPX runtime system, there is no task priority control until now.

References and Acknowledgement

This work is partially supported by MEXT Next Generation High-Performance Computing Infrastructures and Applications R&D Program "R&D of A Quantum-Annealing-Assisted Next Generation HPC Infrastructure and its Applications," and Grant-in-Aid for Scientific Research(B) #17H01706.