1. Introduction

In this study, mSMS [1], which is page-based distributed shared memory system is used for multi-node implementation of FDTD(2,4) method, and the performance evaluation is presented. For efficient large-scale acoustic analysis, it is important to employ high-order FDTD method such as FDTD(2,4) method [2], which has second-order accuracy in time and fourth-order accuracy in space. To improve the programming productivity in multi-node environments, the PGAS language that provides a global view of programming can be used.

2. Performance Evaluation

![Graphs showing weak scaling results and barrier time](image)

Experimental Environment and Conditions

TSUBAME 3.0 (Intel Xeon E5-2680 v4, 14 core, 2.4GHz × 2 / node, Intel Omni-Path 100Gb/s × 4, Intel MPI 2018.1.163)

ITO Subsystem A (Intel Xeon Gold 6154, 18 core, 3.0 GHz × 2 / node, InfiniBand EDR 4x 100Gb/s, MVAPICH2-X 2.2)

mSMS version: r121, Calculation Precision: double, Calculation Mesh Size: 1024^3/node, OpenMP Threads Number: 24

Remote data preload API

Efficient explicit data prefetching (preloading continuous pages with specified size) is possible by using preload API.

3. Application Example

Helmholtz Resonator Model with PML (Perfectly Matched Layer) [3]

![Graph showing pressure distribution](image)

Even in the complex boundary problem, mSMS can achieve decent results with few code modifications. The below results are without using Preload API (no explicit code optimization for data transfer).

4. Conclusion and Future Work

Conclusion

We demonstrated the nearly ideal weak scaling performance of the FDTD(2,4) method parallelized with mSMS and OpenMP, in spite of using a simple implementation.

Future Work

- Overlapping computation/communication by using a non-blocking preload API.
- Implementation and performance evaluation of FDTD(2,4) method with mSMS-GPGPU.
- Incorporating spatial and temporal blocking (non-redundant) into the FDTD(2,4) method.

5. References

