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* Overview of High Performance Computing

* With Extreme Computing the “rules” for
computing have changed



o 500 Since 1993

H. Meuer, H. Simon, E. Strohmaier, & JD

- Listing of the 500 most powerful
Computers in the World
- Yardstick: Rmax from LINPACK MPP

Ax :b , dense problem

TPP performance

Rate

- Updated twice a year e
SC‘xy 1n the States in November
Meeting in Germany in June

- All data available from www.top500.org



PERFORMANCE DEVELOPMENT OF HPC OVER THE @‘5'60

LAST 25 YEARS FROM THE TOPS500
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PERFORMANCE DEVELOPMENT 500
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1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Tflops (1012) ! = Pflops (1015) Eflops (10'3)
~ Achieved Achieved Achieved?

Today: 1 cabinet

Today: SW 26010 & Intel KNL ~ ASCIRed of TaihuLight ~ RoadRunner China says 2020
~ 3 Tflop/s Sandia NL ~3Pflop/s  Los Alamos NL U.S. says 2021
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State of Supercomputing in 2018

Pflops (> 10> Flop/s) computing fully established with 181
systems.

Three technology architecture possibilities or “swim lanes”
are thriving.

« Commodity (e.g. Intel)

» Commodity + accelerator (e.g. GPUs) (101 systems)

» Special purpose lightweight cores (e.g. IBM BG, , Knights Landing,

TaihuLight, PEZY-SC2 )

Interest in supercomputing is now worldwide, and growing in
many new markets (~-50% of Top500 computers are in industry).

Exascale (10'8 Flop/s) projects exist in many countries and
regions.

Intel processors largest share, 94% followed by AMD, 1%.
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Countries Share

Number of Systems on the
Top500

China mEEEEEsSSSSS———— 702
US meesssssssssss 144
Japan mmm 35
Germany == 21
France ®™m 18
UK = 15
Italy ® 6
Poland 1 5
Canada 1 5
Others mmmmm 49
0 50 100 150 200 250

US has fallen to the lowest point
since the TOP500 list was created.
China has 35% of the performance
US has 30% of the performance
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November 2017: The TOP 10 Systems

Country

Rank Site Computer
National Super Y
1 Computer Center in Sunway(z'l;aélc'i‘t)lLig 2.2’51’3:/26010
Wuxi

Cores Rmax | 7% of | Power |GFlops/—
[Pflops]| Peak | [MW]| Watt
10,649,000 93.0 | 74 | 15.4 | 6.04

TaithuLight 1s Equal to Sum of All Top500 Systems in Japan

TaihuLight is about 1/3 the Sum of the other Asian Machines in Top500

Japan Agency

ExaScalar ZettaScaler-2.2 Xeon

? | Marine-Earth S&T | (16¢) + PEZY-SC2 (2048C) 19,840,004 19.1 | 67 |EEEEEEEES
DOE / 0S Titan, Cray XK7, AMD (16C) + = x\
5 ; Nvidia Kepler GPU (14C) + 560,640 | 17.6 65 | 8.21 | 2.14
Oak Ridge Nat Lab P
ustom
6 pOE / NNSA Sequoia, BlueGene/Q (16C) 1,572,864 17.2 85 789 | 218
L Livermore Nat Lab + custom
DOE / NNSA / Trinity, Cray XC40,Xeon Phi
4 Los Alamos & Sandia (68C) + Custom S datdl 50
DOE / Os Cori, Cray Xc40, Xeon Phi (68C) -
8 L Berkeley Nat Lab + Custom J 622,336 | 14.0 50 | 3.94 | 3.65
. Oakforest-PACS, Fujitsu
g | Joint Center for |5 i oray CX1640, Xeon Phi (68¢) 558,144 | 13.6 | 54 @ 2.72| 4.98
Advanced HPC ’
+ Omni-Path
RIKEN Advanced K computer Fujitsu SPARC64
2 Inst for Comp Sci VIIIfx (8C) + Custom AL L = e
500 Flemish Supercomputer Intel (14C) 16128 .548 88
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<+ HPL and HPCG

¢ HPL (Top500) based on solving ¢+ HPCG based on solving a

a dense matrix problem. sparse matrix problem.
>»Ax=Db >»Ax=Db

> A is dense (full of nonzeros) > A is sparse (mainly zeros)

> Use a direct solver > Use an iterative solver

» Gaussian Eli. w/partial pivoting » Conjugate Gradient Method

> Main driver is matrix multiply » Main driver is matrix vector ops
» Matrix random » Matrix from a synthetic

discretized 3D PDE

07

27-point stencil operator



HPCG Benchmark November 2017

Rank

10

Site Computer

RIKEN Advanced Institute for

. . K computer —, SPARC64 VIlIfx 2.0GHz, Tofu
Computational Science

interconnect, Fujitsu

Japan

Tianhe-2 (MilkyWay-2) — TH-IVB-FEP Cluster,
NPCT F GuEngz ey Intel Xeon 12C 2.2GHz, TH Express 2, Intel
China Xeon Phi 31S1P 57-core, NUDT
DOE/NNSA/LANL/SNL Trinity — Cray XC40, Intel Xeon E5-2698 v3
USA 300160C 2.3GHz, Aries, Cray

Swiss National
Piz Daint — Cray XC50, Intel Xeon E5-2690v3

Supercomputing Centre 15 ->"s 51, Cray Aries, NVIDIA Tesla P100
(CSCS) 16GB, Cray
Switzerland

National Supercomputing
Center in Wuxi

China

Joint Center for Advanced
High Performance

Sunway TaihuLight — Sunway MPP, SW26010
260C 1.45GHz, Sunway, NRCPC

Oakforest-PACS — PRIMERGY CX600 M1, Intel
Xeon Phi Processor 7250 68C 1.4GHz, Intel

Computing Omni-Path Architecture, Fuijitsu

Japan

DOE/SC/LBNL/NERSC Cori — XC40, Intel Xeon Phi 7250 68C 1.4GHz,
USA Cray Aries, Cray

DOE/NNSA/LLNL Sequoia — IBM BlueGene/Q, PowerPC A2 1.6
USA GHz 16-core, 5D Torus, IBM

DOE/SC/Oak Ridge Nat Lab Titan — Cray XK7, Opteron 6274 16C 2.200GHz,
USA Cray Gemini interconnect, NVIDIA K20x, Cray

GSIC Center, Tokyo Institute TSUBAME3.0 — SGI ICE XA (HPE SGI 8600),
of Technolo y IP139-SXM2, Intel Xeon E5-2680 v4 15120C

gy 2.9GHz, Intel Omni-Path Architecture, NVIDIA
Japan TESLA P100 SXM2 with NVLink, HPE

Cores

705,024

3,120,000

979,072

361,760

10,649,600

557,056

632,400

1,572,864

560,640

136,080

HPL Rmax
Pflop/s

10.51

33.86

14.13

eLste)

93.01

SRS

13.83
17.17

17.59

12.12

TOP500
Rank

10

2

13

HPCG (Pflop/s)

0.603

0.580
0.546

0.486

0.481

0.385

0.355
0.330

0.322

0.189

Fraction of
Peak

5.3%

1.1%
1.8%

1.9%

0.4%

1.5%

1.3%
1.6%

1.2%

1.6%



Exascale Race/Technologies
Projected Exascale Dates and Suppliers

US — EU 7,4
= Sustained ES: 2023 = Sustained ES: 2022-2023
= Peak ES: 2021 * Peak ES: 2021
= Vendors: U.S. = Vendors: U.S., Europe
= Processors: U.S. (some ARM?) = Processors: Likely ARM
= |nitiatives: NSCI/ECP = |nitiatives: EuroHPC
= Cost: $300-600M per system, = Cost: $300-$350M per system,
plus heavy R&D investments plus heavy R&D investments
China Japan @
= Sustained ES: 2021-2022 = Sustained ES: 2022
= Peak ES: 2020 = Peak ES: Likely as a AI/ML/DL system
= VVendors: Chinese = \/endors: Japanese
= Processors: Chinese (p|US US'?) = Processors: Japanese
= 13" 5-Year Plan = Cost: $800M-$1B, this includes both 1
= Cost: $350-500M per system, system and the R&D costs, will also do
plus heavy R&D many smaller size systems

» Sustained ES on a single 64-bit real application

© Hyperion Research



© Hyperion Research

Exascale Race/Technologies

Projected Exascale Investment Levels
(In Addition to System Purchases)

U.S.

= $1 to $2 billion a year in R&D
= |[nvestments by both governments
& vendors

= Plans are to purchases multiple
exascale systems each year

EU

= About 5 billion euros in total
= Investments in multiple exascale
and pre-exascale systems

= Investments mostly by country
governments with a little from
the EU

China

= Over $1 billion a year in R&D

= |[nvestments by both governments
& vendors

= Plans are to purchases multiple
exascale systems each year

= Already investing in 3 pre-
exascale systems starting in late
2018

Japan @

= Planned investment of just over
$1billion* (over 5 years& for both
the R&D and purchase of 1
exascale system

= To be followed by a number of
smaller systems ~$100M to
$150M each

= Creating a new processor and a
new software environment

* Note that this includes both the system and R&D
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< Toward Exascale

= China plans for Exascale 2020

= Three separate developments in HPC; “Anything but from the US”
« Wuxi

* Upgrade the ShenWei O(100) Pflops all Chinese
* National University for Defense Technology

+ Tianhe-2A O(100) Pflops will be Chinese ARM processor + accelerator SRIRE
. Sugon - CAS ICT J- e sl

L
+ X86 based:. collaboration with AMD I 1k i l

- US DOE - Exascale Computing Program - 7 Year

‘A-'A-'A-Vl

Pr'ogr'am Exascale
> Initial exascale system based on advanced architecture and * 50X the performance of
delivered in 2021 today's 20 PF systems
+ 20-30 MW power
> Enable capable exascale systems, based on ECP R&D, - = 1 perceived fault /week
delivered in 2022 and deployed in 2023 *  SW to support broad range

of apps
07

13
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<= Next Big Systems in the US DOE

= Oak Ridge Lab and Lawrence Livermore Lab to
receive IBM and Nvidia based systems
= IBM Power 9 + Nvidia Volta V100
= Installation started but not completed until 2018

= 5-10 times Titan on apps

= 4,600 nodes, each containing six 7.5-teraflop NVIDIA V100
6PUs, and two IBM Power9 CPUs, its aggregate peak performance
should be > 200 petaflops.

= ORNL June 2018 fully ready (Top500 number)
= In 2021 Argonne Lab to receive Intel based system

= Exascale systems, based on a Future Intel proc, not Knights Hill

= Aurora 21
* Balanced architecture to support three pillars
* Large-scale Simulation (PDEs, traditional HPC)
* Data Intensive Applications (science pipelines)
* Deep Learning and Emerging Science AI
» Integrated computing, acceleration, storage
* Towards a common software stack 14




US Department of Energy Exascale Computing Program
has formulated a holistic approach that uses co-design
and integration to achieve capable exascale

Software Hardware
Technology Technology

Science and mission Scalable and Hardware technology Integrated exascale
applications productive software elements supercomputers
stack
_{ Correct tness ][ Visualization ][ Data Analysis ]_
[ Applications ][ Co-Design }

Programming models,
nvironi

development envirol ment,J

Workflow:

ECP’s work encompasses applications, system software, hardware technologies and
architectures, and workforce development

EXASCALE

S \
t\(\L\) — coveiTie

15 Exascale Computing Project, www.exascaleproject.org
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Machine Learning in Computational Science

Many fields are beginning to adopt machine learning to augment modeling and simulation

methods

Climate
Biology

Drug Design
Epidemology
Materials
Cosmology
High-Energy Physics

> oy ABETNA TARGE] *OMPUTE
~APPS ALGORITHMS DATA _
=X »(F , 5 MINING
AL CHITECTURES
= L == fif 'NG LEARNING
@ ,l;i[,,,, OIINLC J BRAND

#84517548

I L —




Deep Learning Needs Small Matrix Operations

Matrix Multiply is the time consuming part.
Convolution Layers and Fully Connected Layers require matrix multiply

There are many GEMM'’s of small matrices, perfectly parallel, can get by with 16-bit floating point

C S, C S: n; n;
input feature maps feature mapsfeature mapsfeature maps output
232 __28x28 _ Mx14 | 10x10 | SxS
\ = \ N\
\ , . L | A _\\ ’ \.bol
N\ L o L AN N
\E: | ‘} — \\ \,9
i = »
5x5 % n \\ \
convolution \ 2x2 ) 5"5_ = | e \ " fully \
subsampling convolution i 2x2 connected
N o _sbsmplng NN N
feature extraction classification

X

a Wi W2 W3
- X2

ay Wi Wi Wiz

X3

). Convolution Step

P Fully C ted
“oso7 Inthis case 3x3 GEMM oY LOnAeCTe
>y Classification
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IEEE 754 Half Precision (16-bit) Floating Pt Standard

A lot of interest driven by "machine learning” ‘

exponent fraction
sign (5 bit) (10 bit)

|l | I

ntel.

NEAR LINEAR SCALING
JIX oo

WHEN SCALING TO 32 NODLSY

»n DIRECT
ADDGBI

VS 16GE WITH A GIUt

INTEL XEON PHI RESULTS

NOV™16 TOPS00 LIST

+45 09
N —
18 /57

KNIGHTS MILL -

Next Gen Xeon Phi

i'f DEEP LEARNDG 2017

AMD

AMD Radeon Instinct
[ [ [
Memory Type 16GB GDDR5 4GB HBM "High Bandwidth Cache
and Controller”
Memory Bandwidth 224GBlsec 512GB/sec ?
Single Precision fa]=I =l Ru=Nal=l 12.5 TFLOPS
(FP32;
Half Precision 5.7 TFLOPS 8.2 TFLOPS 25 TFLOPS
(FP16)
TD <150W <175W
Cooling Passive Passive Passive
(SFF)
GPU Polaris 10 Fiji Vega
Manufacturing GloFo 14nm TSMC 28nm ?
Process
I T T L Y
GK110 (Kepler) GM200 GP100 GV100 (Volta)
(Maxwell) (Pascal)
SMs 15 24 56 80
TPCs 15 24 28 40
FP32 Cores / SM 192 128 64 64 <D
FP32 Cores / GPU 2880 3072 3584 5120
FP64 Cores / SM 64 4 32 32
FP64 Cores / GPU 960 96 1792 2560 nvl DIA
Tensor Cores / SM NA NA NA 8 °
Tensor Cores / GPU NA NA NA 640
GPU Boost Clock 810/875 MHz 1114 MHz 1480 MHz 1455 MHz
Peak FP32 TFLOP/s" 5.04 6.8 10.6 15
— A s ~¥3

Peak Tensor Core NA NA NA 120
TFLOP/s'




n
< Mixed Precision

- Today many precisions to deal with

| Type Size | Range | u=27"1
half 16 bits ~ 10*° 2-""~49x10™*
single 32 bits  10*3® 2724 ~6.0x 1078

double 64 bits  10%308 2758 ~ 11 x 1071¢
quadruple | 128 bits 10+4%%2 27113 ~ 9.6 x 10°%°

- Note the number range with half precision
(16 bit fl.pt.)

exponent fraction
sign (5 bit) (10 bit)

1/30/18 o O 8
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<= Nvidia Volta peak rates

64 bit floating point (FMA): 7.5 Tflop/s
32 bit floating point (FMA): 15 Tflop/s
16 bit floating point (FMA): 30 Tflop/s
16 bit floating point with Tensor core: 120 Tflop/s

Mixed Precision Matrix Math
4x4 matrices

07

20



VOLTA TENSOR OPERATION

Sum with
FP16 Full precision FP32 Convert to
storage/input product accumulator FP32 result
more products
} 4

m —© © =
-
L i

=

Also supports FP16 accumulator mode for inferencing

21
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Leveraging Half Precision in HPC on Vioo

Study of the Matrix Matrix multiplication kernel on Nvidia V100

* dgemm achieve about 6.4 Tflop/s

' [A=FP64 GEMM|

Matrix matrix multiplication GEMM

C |=af 4 B |+g[ C

A—tb—t—to—b—b—b—b—b—h—A

2k 4k 6k 8k 10k12k14k16k18k20k22k24k26k28k30
matrix size
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Leveraging Half Precision in HPC on Vioo

Study of the Matrix Matrix multiplication kernel on Nvidia V100

%2 GENM * dgemm achieve about 6.4 Tflop/s
FP64 GEMM « sgemm achieve about 14 Tflop/s

Matrix matrix multiplication GEMM

C |=af 4 B |+g[ C

XL I I X

2k 4k 6k 8k 10k12k14k16k18k20k22k24k26k28k30k
matrix size




[

Leveraging Half Precision in HPC on Vioo

Study of the Matrix Matrix multiplication kernel on Nvidia V100

=“©-FP16 GEMM
FP32 GEMM
FP64 GEMM

~4X

dgemm achieve about 6.4 Tflop/s
sgemm achieve about 14 Tflop/s
hgemm achieve about 27 Tflop/s

Matrix matrix multiplication GEMM

2k 4k 6k 8k 10k12k14k16k18k20k22k24k26k28k30

matrix size

C

=

A

B

+B

(e
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Leveraging Half Precision in HPC on Vioo

Study of the Matrix Matrix multiplication kernel on Nvidia V100

" 7 |-@=FP16 GEMM Tensor Cores

“©-FP16 GEMM
FP32 GEMM
FP64 GEMM

dgemm achieve about 6.4 Tflop/s
sgemm achieve about 14 Tflop/s
hgemm achieve about 27 Tflop/s
Tensor cores gemm reach about 85 Tflop/s

Matrix matrix multiplication GEMM

2k 4k 6k 8k 10k1

2k14k16k18k20k22k24k26k28k 30
matrix size

C

=

A

B

+B

(e
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Leveraging Half Precision in HPC on Vioo

Study of the Matrix Matrix multiplication kernel on Nvidia V100

M\ﬁ

" 7 |-@=FP16 GEMM Tensor Cores

“©-FP16 GEMM
FP32 GEMM
FP64 GEMM

dgemm achieve about 6.4 Tflop/s
sgemm achieve about 14 Tflop/s
hgemm achieve about 27 Tflop/s
Tensor cores gemm reach about 85 Tflop/s

Matrix matrix multiplication GEMM

2k 4k 6k 8k 10k1

2k14k16k18k20k22k24k26k28k 30
matrix size

C

=

A

B

+B

(e




Leveraging Half Precision in HPC on Vioo

Study of the rank k update used by the LU factorization algorithm on Nvidia V100

«-FP16 TC square =@=FP16 square besz square  ===FP64 square | * In LU factorization need matrix
gQ | " FP16TCk=256 == FP16 k=256 = = FP32 k=256 = = FP64 k=256 multiple but operations is a

rank-k update computing the
Schur complement

H-N-|-

“-|lil lllllllllll...----.llllll....--.lll

“‘Illlllllllllllllll
EEEm
“‘....-----llllllll

2k 4k 6k 8k 10k12k14k16k18k20k22k24k26k28k30
m=n
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Leveraging Half Precision in HPC on Vioo

24

20

16

Tflop/s
N

Study of the LU factorization algorithm on Nvidia V100

M\ﬁ

H=l=FP16 hgetrf LU factorization Tensor Cores
=©-FP16 hgetrf LU factorization
FP32 sgetrf LU factorization
FP64 dgetrf LU factorization

2k 4k 6k 8k 10k1

2k14k16k18k20k22k24k26k28k 30
matrix size

LU factorization is used to solve a

linear system Ax=b
A x=Db

LUx=Db

Ly =b

then
Ux =y

M -0
AN i-§
b i=§
=i
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Leveraging half precision for HPC

Mixed Precision Methods

* Mixed precision, use the lowest precision
required to achieve a given accuracy
outcome

— Improves runtime, reduce power
consumption, lower data movement

— Reformulate to find correction to solution,

rather than solution; Ax rather than x. Sial = X — S (xi)
l L)

G ==~




Leveraging Half Precision in HPC on Vioo

Use Mixed Precision algorithms

»Achieve higher performance — faster time to solution

»Reduce power consumption reduce power consumption by decreasing the
execution time = Energy Savings !!!

Reference:
A. Haidar, P. Wu, S. Tomoyv, J. Dongarra,
Investigating Half Precision Arithmetic to Accelerate Dense Linear System Solvers,
SC-17, ScalA17: 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, ACM, Denver, Colorado, November 12-17, 2017.




Leveraging Half Precision in HPC on Vioo

Idea: use low precision to compute the expensive rogs (LU O(n3)) and then iteratively
refine the solution in order to achieve the FP64 arithmetic

Iterative refinement for dense systems, Ax = b, can work this way.

L U = lu(A) lower precision Oo(n3)
x = U\(L\b) lower precision 0o(n?)
r=>b- Ax FP64 precision o(n?)

WHTILE || r || not small enough
1. find a correction "z" to adjust x that satisfy Az=r
solving Az=r could be done by either:

> z = U\(L\r) Classical Iterative Refinement lower precision 0O(n?)

> GMRes preconditioned by the LU to solve Az=r Iterative Refinement using GMRes lower precision O(n?)

2. X=x+12 FP64 precision O(n?)

3. r=b- Ax FP64 precision O(n3)
END

» Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt results when using DP fl pt.
» It can be shown that using this approach we can compute the solution to 64-bit floating point precision.
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Leveraging Half Precision in HPC on Vioo

Convergence hlstory for Classm Iteratlve Refinement Convergence hlstory for Iteratlve Reflnement usmg GMRes
0 FP32->64 IR 0 FP32->64 IRGM
107 FP16->64 IR T 107 FP16->64 IRGM T
G. FP16->64 IR (Tensor Cores) FP16->64 IRGM (Tensor Cores)
Q. e,
105 Q™ ‘© 0., : 10} |
§ k ‘e N e G..' §
E * ’,O G... 'g
21070¢ ® “©. . 210701 .
S ., 0’. h.. S
0. 0 Q
-15 b -15
107 T 107 T
'20 1 1 1 1 1 1 1 '20 1 1 1 1 1 1 1
0% 1 2 3 4 5 6 7 8 0% 1 2 3 4 5 6 7 8
# iterations # iterations

Matrix of size 10240 generated with positive A and arithmetic distribution of its singular values
op=1- (=1 - ) and where its condition number is equal to 102

cond
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Leveraging Half Precision in HPC on Vioo

Performance of solving Ax=b

28 (5 FPod dgesy|
-E-FP64 dgesv|
29 = gesv

20
18 -
16

212—
10,

using FP64 or IR with GMRes to achieve FP64 accuracy

Flops = 2n3/(3 time)
meaning twice higher is twice faster

oON O
T

2k 4k 6k 8k10ki2ki4ki6ki8k 22k 26k 30k 34k
Matrix size

Matrices generated with positive A and arithmetic distribution of its singular values
o; =1 — (&=1)(1 — =) and where its condition number is equal to 102.

n—1 cond

» solving Ax = b using FP64 LU




Leveraging Half Precision in HPC on Vioo

Performance of solving Ax=b
using FP64 or IR with GMRes to achleve FP64 accuracy

24

22 Egggggs:sdvsgesv - Flops = 2n°/(3 time)
201 | meaning twice higher is twice faster
18 .

» solving Ax = b using FP64 LU

w :2 I | » solving Ax = b using FP32 LU and
3 iterative refinement to achieve FP64
o12r I accuracy
10+ 4
8 L 4

oON O
T

2k 4k 6k 8k10ki2ki4ki6ki8k 22k 26k 30k 34k
Matrix size

Matrices generated with positive A and arithmetic distribution of its singular values
o, =1— (2 —L) and where its condition number is equal to 102.

=




Leveraging Half Precision in HPC on Vioo

Performance of solving Ax=b

o4 using FP64 or IR with GMRes to achieve FP64 accuracy

22 igggg-ggzsdvsgesv . . FlOPS = 2.n3/ (3.time.) |
20 FP16->64 dhsgesv | meaning twice higher is twice faster
18} -
16 | + solving Ax = b using FP64 LU
w14l | » solving Ax = b using FP32 LU and
3 iterative refinement to achieve FP64
o12r I accuracy
F=10r T - solving Ax = b using FP16 LU and
8 i iterative refinement to achieve FP64
6 - . accuracy
4L i
2 | i
0 1 1 1

2k 4k 6k 8k10ki2ki4ki6ki8k 22k 26k 30k 34k
Matrix size
Matrices generated with positive A and arithmetic distribution of its singular values

o; =1— (=%)(1 — ) and where its condition number is equal to 10?.




Leveraging Half Precision in HPC on Vioo

Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy

24— —— .
22 Eggg-gggsdvs esv ) Aol 2 A MG |
20 | |=F=FP16->64 dhggesv | meaning twice higher is twice faster
18l FP16->64 dshtgesv |
16 | + solving Ax = b using FP64 LU
w14l | » solving Ax = b using FP32 LU and
3 iterative refinement to achieve FP64
o12r I accuracy
F=10r T - solving Ax = b using FP16 LU and
8 i iterative refinement to achieve FP64
6 - . accuracy
4+ . » solving Ax = b using FP16 Tensor Cores
2t . LU and iterative refinement to achieve
0 L FP64 accuracy

2k 4k 6k 8k10ki2ki4ki6ki8k 22k 26k 30k 34k
Matrix size
Matrices generated with positive A and arithmetic distribution of its singular values

o; =1— (=%)(1 — ) and where its condition number is equal to 10?.




Leveraging Half Precision in HPC on Vioo

Convergence history for Classic Iterative Refinement

Convergence history for Iterative Refinement using GMRes

o FP32>641R o  |@FpssealRGM
10 FP16->64 IR 1 107 FP16->64 IRGM .
FP16->64 IR (Tensor Cores) FP16->64 IRGM (Tensor Cores)
10° | 107} ]
© ®
=} =}
S S
610-10 i 310-10, i
10°15 | 10151 i
1 0'20 L 1 1 1 1 1 1 1 1 1 1 1 1 0'20 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 17 34 51 68 85 102 119 136 153 170 18 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

# iterations # iterations

Matrix of size 10240 generated with positive A and clustered singular values,
oi=(1, -+, 1, ﬁ) and where its condition number is equal to 102.
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Leveraging Half Precision in HPC on Vioo

e m\ﬁ

Performance of solving Ax=b

using FP64 or IR with GMRes to achieve FP64 accuracy

24 (4=-FP64 dgesv '

22
20+
18 -
16 -
%_14—

Flops = 2n3/(3 time)
meaning twice higher is twice faster

Matrices generated with positive A and clustered distribution of its singular values

o;=(1, ---, 1, ——) and where its condition number is equal to 102.

2k 4k 6k 8k10KI2ki4ki6ki8k 22k 26k 30k 34k
Matrix size

' con

» solving Ax = b using FP64 LU
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Leveraging Half Precision in HPC on Vioo

Performance of solving Ax=b
using FP64 or IR W|th GMRes to achleve FP64 accuracy

24 EFP64d gesv '
FP32->64 dsgesv

- -
o
T T

%_14—

Flops = 2n3/(3 time)
meaning twice higher is twice faster

Matrices generated with positive A and clustered distribution of its singular values
o;=(1, ---, 1, ——) and where its condition number is equal to 102.

2k 4k 6k 8k10ki2ki4ki6ki8k 22k 26k 30k 34k
Matrix size

solving Ax = b using FP64 LU

solving Ax = b using FP32 LU and
iterative refinement to achieve FP64
accuracy




[

Leveraging Half Precision in HPC on Vioo

24

£14

Matrices generated with positive A and clustered distribution of its singular values
o;=(1, ---, 1, ——) and where its condition number is equal to 102.

S m\ﬁ

Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy

FP32->64 dsgesv

EFPM dgesv

FP16->64 dhsgesv

slow convergence affect .
the performance

Flops = 2n3/(3 time)
meaning twice higher is twice faster

2k 4k 6k 8k10ki

) con

2ki4ki6ki8
Matrix size

k 22k 26k 30k 34k

solving Ax = b using FP64 LU

solving Ax = b using FP32 LU and
iterative refinement to achieve FP64
accuracy

solving Ax = b using FP16 LU and
iterative refinement to achieve FP64
accuracy
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Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy

24 - EFFP64 dgesv Flops = 2n3/(3 time)

22 -%E??é:igﬁ Sﬁggz‘;v i meaning twice higher is twice faster

20 |-|=) =FP16->64 dshtgesv a

181 i » solving Ax = b using FP64 LU

16+ 1 - solving Ax = b using FP32 LU and
S14r 1 iterative refinement to achieve FP64
212} - accuracy
" 10t - - solving Ax = b using FP16 LU and

8 . iterative refinement to achieve FP64

6 . accuracy

4 - . » solving Ax = b using FP16 Tensor Cores

2L . LU and iterative refinement to achieve

0 L FP64 accuracy

2k 4k 6k 8k10ki2ki4ki6ki8k 22k 26k 30k 34k
Matrix size
Matrices generated with positive A and clustered distribution of its singular values

o;=(1, ---, 1, ——) and where its condition number is equal to 102.




Leveraging Half Precision in HPC on Vioo

Use Mixed Precision algorithms

»Achieve higher performance — faster time to solution

»Reduce power consumption reduce power consumption by decreasing the
execution time = Energy Savings !!!
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Leveraging Half Precision in HPC
Power awareness

Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy

23%5223.:gzzvsgesv o -  Flops = 20%/(3 time) |
20 || =#=FP16->64 dhsgesv | meaning twice higher is twice faster
18l FP16->64 dshtgesv |

16 * Let’s go back to this performance graph
w14l | of sol'ving Ax=b usipg the four different
?3_12 I | algorithms that achieve FP64 solution
F10t |

8 L 4

6 L 4

4 | i

2 | i

0 1 1 1 1

2k 4k 6k 8k10ki2ki4ki6ki8k 22k 26k 30k 34k
Matrix size
Matrices generated with positive A and arithmetic distribution of its singular values

o; =1— (=%)(1 — ) and where its condition number is equal to 10?.




Leveraging Half Precision in HPC
Power awareness (1] Intel Xeon E5-2650 v3 (Haswell) NVIDIAVoItaGPU

2x10 cores @ 2.30 GHz 80 MP x 64 @ 1.38 GHz

\ Solving Ax=b on Nvidia V100

460
440
420

«  Power consumption of the FP64 algorithm to
solve Ax=b for a matrix of size 34K, it achieve
5.5 Tflop/s and requires about 2021 joules
providing about 14 Gflops/Watts.

|=——FP64 solver dgesv

Power is for GPU + CPU + DRAM

55 Performance
’ in Tflgp/s

14  Gflo atts

0 . . . . . 2o21 Joul

0 1 2 3 4 5 6 7
Time (sec)

Matrices generated with positive A and arithmetic distribution of its singular values

o; =1— (=%)(1 — ) and where its condition number is equal to 10?.
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Leveraging Half Precision in HPC

Power awareness Mixed precision techniques can provide

a large gain in energy efficiency

\ Solving Ax=b on Nvidia V100

460
440
420

«  Power consumption of the FP64 algorithm to
solve Ax=b for a matrix of size 34K, it achieve
5.5 Tflop/s and requires about 2021 joules
providing about 14 Gflops/Watts.

——=FP64 solver dgesv
——FP32-->64 solver dsgesv «  Power consumption of the mixed precision

FP32->64 algorithm to solve Ax=hb for a
matrix of size 34K, it achieve 10.7 Tflop/s and
requires about 1041 joules providing about
30 Gflops/Watts.

Itérative refinement

Performance
10.7 5.5 in Tflap/s

30 14 Gflo| atts

0 , , , 1041 , 2021 Joul

0 1 2 3 4 5 6 7
Time (sec)

Matrices generated with positive A and arithmetic distribution of its singular values

o; =1— (=%)(1 — ) and where its condition number is equal to 10?.




Leveraging Half Precision in HPC

Power awareness

\ Solving Ax=b on Nvidia V100

460
440
420

—=FP64 solver dgesv

——=FP32-->64 solver dsgesv
——FP16-->64 solver dhgesv

N

Performance

gg i 16.8 10.7 55 in THiap/s
40 - 48 30 14 Gflo atts
200 i , , 609 1041 , 2021 Joul
0 1 2 3 4 5 6 7
Time (sec)

Mixed precision techniques can provide
a large gain in energy efficiency

Power consumption of the FP64 algorithm to
solve Ax=b for a matrix of size 34K, it achieve
5.5 Tflop/s and requires about 2021 joules
providing about 14 Gflops/Watts.

Power consumption of the mixed precision
FP32->64 algorithm to solve Ax=hb for a
matrix of size 34K, it achieve 10.7 Tflop/s and
requires about 1041 joules providing about
30 Gflops/Watts.

Power consumption of the mixed precision
FP16->64 algorithm to solve Ax=b for a
matrix of size 34K, it achieve 16.8 Tflop/s and
requires about 609 joules providing about

48 Gflops/Watts.

Matrices generated with positive A and arithmetic distribution of its singular values
o; =1 — (&=1)(1 — =) and where its condition number is equal to 102.

n—1 cond




Leveraging Half Precision in HPC

Power awareness Mixed precision techniques can provide

a large gain in energy efficiency

\ Solving Ax=b on Nvidia V100

460
440
420
400
380
360

340

5 3%

E280

© 260

S 240
8 220
o 200
2180
= 160

—=FP64 solver dgesv

——FP32-->64 solver dsgesv
——FP16-->64 solver dhgesv
———FP16-->64 solver dhgesv (TC) *

Perfotmance
24.0 16.8 10.7 55 inTH p/s

74 48 30 14  Gflo| atts

0 , A70 609 1041 , 2021 Joule

0 1 2 3 4 5 6 7 ¢
Time (sec)

Matrices generated with positive A and arithmetic distribution of

o; =1 — (:=1)(1 — L) and where its condition number is equal

Power consumption of the FP64 algorithm to
solve Ax=b for a matrix of size 34K, it achieve
5.5 Tflop/s and requires about 2021 joules
providing about 14 Gflops/Watts.

Power consumption of the mixed precision
FP32->64 algorithm to solve Ax=hb for a
matrix of size 34K, it achieve 10.7 Tflop/s and
requires about 1041 joules providing about
30 Gflops/Watts.

Power consumption of the mixed precision
FP16->64 algorithm to solve Ax=b for a
matrix of size 34K, it achieve 16.8 Tflop/s and
requires about 609 joules providing about

48 Gflops/Watts.

Power consumption of the mixed precision
FP16->64 TC algorithm using Tensor Cores
to solve Ax=b for a matrix of size 34K, it
achieve 24 Tflop/s and requires about 470
joules providing about 74 Gflops/Watts.




e Critical Issues and Challenges at Peta & Exascale for

Algorithm and Software Design

- Synchronization-reducing algorithms

* Break Fork-Join model
- Communication-reducing algorithms

* Use methods which have lower bound on communication
- Mixed precision methods - from FP16 to FP64

* Leverage speed of lower precision but retain the accuracy of higher
precision

« Autotuning

* Today's machines are too complicated, build “"smarts” intfo software to
adapt to the hardware

- Fault resilient algorithms
* Implement algorithms that can recover from failures/bit flips
- Reproducibility of results

« Today we can't guarantee this, without a penalty. We understand the
issues, but some of our “colleagues” have a hard time with this.
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