
1/30/18 1

An Overview of High Performance
Computing and Experiments with Energy

Savings and Short Precision

Jack Dongarra
University of Tennessee

Oak Ridge National Laboratory
University of Manchester

Outline

• Overview of High Performance Computing
• With Extreme Computing the “rules” for

computing have changed

2

Since 1993

3

H. Meuer, H. Simon, E. Strohmaier, & JD

- Listing of the 500 most powerful
Computers in the World

- Yardstick: Rmax from LINPACK MPP
Ax=b, dense problem

- Updated twice a year
SC‘xy in the States in November
Meeting in Germany in June

- All data available from www.top500.org

Size

R
at

e

TPP performance

PERFORMANCE DEVELOPMENT OF HPC OVER THE
LAST 25 YEARS FROM THE TOP500

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

59.7	GFlop/s

400	MFlop/s

1.17	TFlop/s

93	PFlop/s

548	TFlop/s

845	PFlop/s

SUM

N=1

N=500

1 Gflop/s

1 Tflop/s

100 Mflop/s

100 Gflop/s

100 Tflop/s

10 Gflop/s

10 Tflop/s

1 Pflop/s

100 Pflop/s

10 Pflop/s

1 Eflop/s

6-8
years

My Laptop: 166 Gflop/s

PERFORMANCE DEVELOPMENT

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

SUM

N=1

N=100

1 Gflop/s

1 Tflop/s
100 Gflop/s

100 Tflop/s

10 Gflop/s

10 Tflop/s

1 Pflop/s

100 Pflop/s

10 Pflop/s

1 Eflop/s

N=10

Tflops (1012)
Achieved
ASCI Red
Sandia NL

Pflops (1015)
Achieved

RoadRunner
Los Alamos NL

Eflops (1018)
Achieved?

5 China says 2020
U.S. says 2021

Today: SW 26010 & Intel KNL
~ 3 Tflop/s

≈
Today: 1 cabinet

of TaihuLight
~ 3 Pflop/s

≈

State of Supercomputing in 2018
• Pflops (> 1015 Flop/s) computing fully established with 181

systems.
• Three technology architecture possibilities or “swim lanes”

are thriving.
• Commodity (e.g. Intel)
• Commodity + accelerator (e.g. GPUs) (101 systems)
• Special purpose lightweight cores (e.g. IBM BG, ARM, Knights Landing,

TaihuLight, PEZY-SC2)

• Interest in supercomputing is now worldwide, and growing in
many new markets (~50% of Top500 computers are in industry).

• Exascale (1018 Flop/s) projects exist in many countries and
regions.

• Intel processors largest share, 94% followed by AMD, 1%.

6

Countries Share

US has fallen to the lowest point
since the TOP500 list was created.
China has 35% of the performance
US has 30% of the performance 7

49
5
5
6
15
18
21

35
144

202

0 50 100 150 200 250

Others
Canada
Poland

Italy
UK

France
Germany

Japan
US

China

Number of Systems on the
Top500

November 2017: The TOP 10 Systems
Rank Site Computer Country Cores Rmax

[Pflops]
% of
Peak

Power
[MW]

GFlops/
Watt

1
National Super

Computer Center in
Wuxi

Sunway TaihuLight, SW26010
(260C) + Custom China 10,649,000 93.0 74 15.4 6.04

2
National Super

Computer Center in
Guangzhou

Tianhe-2 NUDT,
Xeon (12C) + IntelXeon Phi (57C)

+ Custom
China 3,120,000 33.9 62 17.8 1.91

3 Swiss CSCS
Piz Daint, Cray XC50, Xeon
(12C) + Nvidia P100(56C) +

Custom
Swiss 361,760 19.6 77 2.27 8.6

4 Japan Agency
Marine-Earth S&T

ExaScalar ZettaScaler-2.2 Xeon
(16c) + PEZY-SC2 (2048C) Japan 19,840,000 19.1 67 1.35 14.1

5 DOE / OS
Oak Ridge Nat Lab

Titan, Cray XK7, AMD (16C) +
Nvidia Kepler GPU (14C) +

Custom
USA 560,640 17.6 65 8.21 2.14

6 DOE / NNSA
L Livermore Nat Lab

Sequoia, BlueGene/Q (16C)
+ custom USA 1,572,864 17.2 85 7.89 2.18

7 DOE / NNSA /
Los Alamos & Sandia

Trinity, Cray XC40,Xeon Phi
(68C) + Custom USA 979,968 14.1 80 3.84 3.67

8 DOE / OS
L Berkeley Nat Lab

Cori, Cray XC40, Xeon Phi (68C)
+ Custom USA 622,336 14.0 50 3.94 3.65

9 Joint Center for
Advanced HPC

Oakforest-PACS, Fujitsu
Primergy CX1640, Xeon Phi (68C)

+ Omni-Path
Japan 558,144 13.6 54 2.72 4.98

10 RIKEN Advanced
Inst for Comp Sci

K computer Fujitsu SPARC64
VIIIfx (8C) + Custom Japan 705,024 10.5 93 12.7 .827

500 Flemish Supercomputer Intel (14C) 16128 .548 88

TaihuLight is about 1/3 the Sum of the other Asian Machines in Top500
TaihuLight is Equal to Sum of All Top500 Systems in Japan

HPL and HPCG
¨ HPL (Top500) based on solving

a dense matrix problem.
ØA x = b
ØA is dense (full of nonzeros)
ØUse a direct solver
ØGaussian Eli. w/partial pivoting
ØMain driver is matrix multiply
ØMatrix random

¨ HPCG based on solving a
sparse matrix problem.
ØA x = b
ØA is sparse (mainly zeros)
ØUse an iterative solver
ØConjugate Gradient Method
ØMain driver is matrix vector ops
ØMatrix from a synthetic

discretized 3D PDE

07
9

Rank Site Computer Cores HPL Rmax
(Pflop/s)

TOP500
Rank HPCG (Pflop/s) Fraction of

Peak

1
RIKEN Advanced Institute for
Computational Science
Japan

K computer – , SPARC64 VIIIfx 2.0GHz, Tofu
interconnect, Fujitsu 705,024 10.51 10 0.603 5.3%

2 NSCC / Guangzhou
China

Tianhe-2 (MilkyWay-2) – TH-IVB-FEP Cluster,
Intel Xeon 12C 2.2GHz, TH Express 2, Intel
Xeon Phi 31S1P 57-core, NUDT

3,120,000 33.86 2 0.580 1.1%

3 DOE/NNSA/LANL/SNL
USA

Trinity – Cray XC40, Intel Xeon E5-2698 v3
300160C 2.3GHz, Aries, Cray 979,072 14.13 7 0.546 1.8%

4
Swiss National
Supercomputing Centre
(CSCS)
Switzerland

Piz Daint – Cray XC50, Intel Xeon E5-2690v3
12C 2.6GHz, Cray Aries, NVIDIA Tesla P100
16GB, Cray

361,760 19.59 3 0.486 1.9%

5
National Supercomputing
Center in Wuxi
China

Sunway TaihuLight – Sunway MPP, SW26010
260C 1.45GHz, Sunway, NRCPC 10,649,600 93.01 1 0.481 0.4%

6
Joint Center for Advanced
High Performance
Computing
Japan

Oakforest-PACS – PRIMERGY CX600 M1, Intel
Xeon Phi Processor 7250 68C 1.4GHz, Intel
Omni-Path Architecture, Fujitsu

557,056 13.55 9 0.385 1.5%

7 DOE/SC/LBNL/NERSC
USA

Cori – XC40, Intel Xeon Phi 7250 68C 1.4GHz,
Cray Aries, Cray 632,400 13.83 8 0.355 1.3%

8 DOE/NNSA/LLNL
USA

Sequoia – IBM BlueGene/Q, PowerPC A2 1.6
GHz 16-core, 5D Torus, IBM 1,572,864 17.17 6 0.330 1.6%

9 DOE/SC/Oak Ridge Nat Lab
USA

Titan – Cray XK7, Opteron 6274 16C 2.200GHz,
Cray Gemini interconnect, NVIDIA K20x, Cray 560,640 17.59 5 0.322 1.2%

10
GSIC Center, Tokyo Institute
of Technology
Japan

TSUBAME3.0 – SGI ICE XA (HPE SGI 8600),
IP139-SXM2, Intel Xeon E5-2680 v4 15120C
2.9GHz, Intel Omni-Path Architecture, NVIDIA
TESLA P100 SXM2 with NVLink, HPE

136,080 12.12 13 0.189 1.6%

H
PC

G
 B

en
ch

m
ar

k
N

ov
em

be
r 2

01
7

Exascale Race/Technologies
Projected Exascale Dates and Suppliers

U.S.
§ Sustained ES: 2023
§ Peak ES: 2021
§ Vendors: U.S.
§ Processors: U.S. (some ARM?)
§ Initiatives: NSCI/ECP
§ Cost: $300-600M per system,

plus heavy R&D investments

11

China
§ Sustained ES: 2021-2022
§ Peak ES: 2020
§ Vendors: Chinese
§ Processors: Chinese (plus U.S.?)
§ 13th 5-Year Plan
§ Cost: $350-500M per system,

plus heavy R&D

EU
§ Sustained ES: 2022-2023
§ Peak ES: 2021
§ Vendors: U.S., Europe
§ Processors: Likely ARM
§ Initiatives: EuroHPC
§ Cost: $300-$350M per system,

plus heavy R&D investments

Japan
§ Sustained ES: 2022
§ Peak ES: Likely as a AI/ML/DL system
§ Vendors: Japanese
§ Processors: Japanese
§ Cost: $800M-$1B, this includes both 1

system and the R&D costs, will also do
many smaller size systems

© Hyperion Research

§ Sustained ES on a single 64-bit real application

Exascale Race/Technologies
Projected Exascale Investment Levels
(In Addition to System Purchases)

U.S.
§ $1 to $2 billion a year in R&D
§ Investments by both governments

& vendors
§ Plans are to purchases multiple

exascale systems each year

12

China
§ Over $1 billion a year in R&D
§ Investments by both governments

& vendors
§ Plans are to purchases multiple

exascale systems each year
§ Already investing in 3 pre-

exascale systems starting in late
2018

EU
§ About 5 billion euros in total
§ Investments in multiple exascale

and pre-exascale systems
§ Investments mostly by country

governments with a little from
the EU

Japan
§ Planned investment of just over

$1billion* (over 5 years) for both
the R&D and purchase of 1
exascale system

§ To be followed by a number of
smaller systems ~$100M to
$150M each

§ Creating a new processor and a
new software environment

* Note that this includes both the system and R&D
© Hyperion Research

Toward Exascale
§ China plans for Exascale 2020

§ Three separate developments in HPC; “Anything but from the US”
• Wuxi

• Upgrade the ShenWei O(100) Pflops all Chinese
• National University for Defense Technology

• Tianhe-2A O(100) Pflops will be Chinese ARM processor + accelerator
• Sugon - CAS ICT

• X86 based; collaboration with AMD

• US DOE - Exascale Computing Program – 7 Year
Program
Ø Initial exascale system based on advanced architecture and

delivered in 2021
Ø Enable capable exascale systems, based on ECP R&D,

delivered in 2022 and deployed in 2023
07

13

Exascale
• 50X the performance of

today’s 20 PF systems
• 20-30 MW power
• ≦ 1 perceived fault /week
• SW to support broad range

of apps

Next Big Systems in the US DOE
§ Oak Ridge Lab and Lawrence Livermore Lab to

receive IBM and Nvidia based systems
§ IBM Power 9 + Nvidia Volta V100
§ Installation started but not completed until 2018
§ 5-10 times Titan on apps
§ 4,600 nodes, each containing six 7.5-teraflop NVIDIA V100

GPUs, and two IBM Power9 CPUs, its aggregate peak performance
should be > 200 petaflops.

§ ORNL June 2018 fully ready (Top500 number)

§ In 2021 Argonne Lab to receive Intel based system
§ Exascale systems, based on a Future Intel proc, not Knights Hill
§ Aurora 21

§ Balanced architecture to support three pillars
§ Large-scale Simulation (PDEs, traditional HPC)
§ Data Intensive Applications (science pipelines)
§ Deep Learning and Emerging Science AI
§ Integrated computing, acceleration, storage
§ Towards a common software stack 14

15 Exascale Computing Project, www.exascaleproject.org

US Department of Energy Exascale Computing Program
has formulated a holistic approach that uses co-design
and integration to achieve capable exascale
Application Development Software

Technology
Hardware

Technology
Exascale
Systems

Scalable and
productive software

stack

Science and mission
applications

Hardware technology
elements

Integrated exascale
supercomputers

Correctness Visualization Data Analysis

Applications Co-Design

Programming models,
development environment,

and runtimes
ToolsMath libraries

and Frameworks

System Software,
resource management
threading, scheduling,
monitoring, and control

Memory
and Burst

buffer

Data
management
I/O and file

system
Node OS, runtimes

R
es

ilie
nc

e

W
or

kf
lo

w
s

Hardware interface

ECP’s work encompasses applications, system software, hardware technologies and
architectures, and workforce development

Machine Learning in Computational Science

• Climate
• Biology
• Drug Design
• Epidemology
• Materials
• Cosmology
• High-Energy Physics

Many fields are beginning to adopt machine learning to augment modeling and simulation
methods

Deep Learning Needs Small Matrix Operations
Matrix Multiply is the time consuming part.

Convolution Layers and Fully Connected Layers require matrix multiply

There are many GEMM’s of small matrices, perfectly parallel, can get by with 16-bit floating point

17 / 47

Convolution Step
In this case 3x3 GEMM

x1

x2

x3

x1 y1

y2

w11

w12

w13

w21

w22

w23

Fully Connected
Classification

IEEE 754 Half Precision (16-bit) Floating Pt Standard

18 / 57

A lot of interest driven by “machine learning”

Mixed Precision
• Today many precisions to deal with

• Note the number range with half precision
(16 bit fl.pt.)

1/30/18
19

Nvidia Volta peak rates

• 64 bit floating point (FMA): 7.5 Tflop/s
• 32 bit floating point (FMA): 15 Tflop/s
• 16 bit floating point (FMA): 30 Tflop/s
• 16 bit floating point with Tensor core: 120 Tflop/s

07
20

07
21

Leveraging Half Precision in HPC on V100

matrix size
2k 4k 6k 8k 10k12k14k16k18k20k22k24k26k28k30k

Tf
lo

p/
s

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

FP64 GEMM

Matrix matrix multiplication GEMM

• dgemm achieve about 6.4 Tflop/s

Study of the Matrix Matrix multiplication kernel on Nvidia V100

Leveraging Half Precision in HPC on V100

matrix size
2k 4k 6k 8k 10k12k14k16k18k20k22k24k26k28k30k

Tf
lo

p/
s

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

FP32 GEMM
FP64 GEMM

Matrix matrix multiplication GEMM

• dgemm achieve about 6.4 Tflop/s
• sgemm achieve about 14 Tflop/s

Study of the Matrix Matrix multiplication kernel on Nvidia V100

~2X

Leveraging Half Precision in HPC on V100

Matrix matrix multiplication GEMM

• dgemm achieve about 6.4 Tflop/s
• sgemm achieve about 14 Tflop/s
• hgemm achieve about 27 Tflop/s

matrix size
2k 4k 6k 8k 10k12k14k16k18k20k22k24k26k28k30k

Tf
lo

p/
s

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

FP16 GEMM
FP32 GEMM
FP64 GEMM

Study of the Matrix Matrix multiplication kernel on Nvidia V100

~4X

Leveraging Half Precision in HPC on V100

Matrix matrix multiplication GEMM

• dgemm achieve about 6.4 Tflop/s
• sgemm achieve about 14 Tflop/s
• hgemm achieve about 27 Tflop/s
• Tensor cores gemm reach about 85 Tflop/s

matrix size
2k 4k 6k 8k 10k12k14k16k18k20k22k24k26k28k30k

Tf
lo

p/
s

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

FP16 GEMM Tensor Cores
FP16 GEMM
FP32 GEMM
FP64 GEMM

Study of the Matrix Matrix multiplication kernel on Nvidia V100

~12X

Leveraging Half Precision in HPC on V100

Matrix matrix multiplication GEMM

• dgemm achieve about 6.4 Tflop/s
• sgemm achieve about 14 Tflop/s
• hgemm achieve about 27 Tflop/s
• Tensor cores gemm reach about 85 Tflop/s

matrix size
2k 4k 6k 8k 10k12k14k16k18k20k22k24k26k28k30k

Tf
lo

p/
s

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

FP16 GEMM Tensor Cores
FP16 GEMM
FP32 GEMM
FP64 GEMM

Study of the Matrix Matrix multiplication kernel on Nvidia V100

Leveraging Half Precision in HPC on V100

• In LU factorization need matrix
multiple but operations is a
rank-k update computing the
Schur complement

m=n
2k 4k 6k 8k 10k12k14k16k18k20k22k24k26k28k30k

Tf
lo

p/
s

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

FP16 TC square
FP16 TC k=256

FP16 square
FP16 k=256

FP32 square
FP32 k=256

FP64 square
FP64 k=256

Study of the rank k update used by the LU factorization algorithm on Nvidia V100

Leveraging Half Precision in HPC on V100

• LU factorization is used to solve a
linear system Ax=b

A x = b

LUx = b

Ly = b

then
Ux = y

A x b

UL x b

L y b

U x y
matrix size

2k 4k 6k 8k 10k12k14k16k18k20k22k24k26k28k30k

Tf
lo

p/
s

0

4

8

12

16

20

24 FP16 hgetrf LU factorization Tensor Cores
FP16 hgetrf LU factorization
FP32 sgetrf LU factorization
FP64 dgetrf LU factorization

Study of the LU factorization algorithm on Nvidia V100

Leveraging half precision for HPC
Mixed Precision Methods

• Mixed precision, use the lowest precision
required to achieve a given accuracy
outcome

– Improves runtime, reduce power
consumption, lower data movement

– Reformulate to find correction to solution,
rather than solution; Δx rather than x.

Use Mixed Precision algorithms
ØAchieve higher performance à faster time to solution
ØReduce power consumption reduce power consumption by decreasing the

execution time à Energy Savings !!!

Leveraging Half Precision in HPC on V100

Reference:
A. Haidar, P. Wu, S. Tomov, J. Dongarra,
Investigating Half Precision Arithmetic to Accelerate Dense Linear System Solvers,
SC-17, ScalA17: 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, ACM, Denver, Colorado, November 12-17, 2017.

Iterative refinement for dense systems, Ax = b, can work this way.
L U = lu(A) lower precision O(n3)
x = U\(L\b) lower precision O(n2)
r = b – Ax FP64 precision O(n2)

WHILE || r || not small enough
1. find a correction “z” to adjust x that satisfy Az=r

solving Az=r could be done by either:
Ø z = U\(L\r) Classical Iterative Refinement lower precision O(n2)
Ø GMRes preconditioned by the LU to solve Az=r Iterative Refinement using GMRes lower precision O(n2)

2. x = x + z FP64 precision O(n1)
3. r = b – Ax FP64 precision O(n2)

END

Idea: use low precision to compute the expensive flops (LU O(n3)) and then iteratively
refine the solution in order to achieve the FP64 arithmetic

Ø Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt results when using DP fl pt.
Ø It can be shown that using this approach we can compute the solution to 64-bit floating point precision.

Leveraging Half Precision in HPC on V100

Leveraging Half Precision in HPC on V100

Factorization and Inversion of a Million Matrices on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The reason is that such software is optimized to handle large sizes of data with embarrassingly
parallel computational kernels such as matrix multiplication (GEMM). In dense linear algebra,
the idea of blocking enables the use of compute-intensive trailing matrix updates that are well-
suited for GPUs [19]. However, when the sizes are very small, the LAPACK-style blocking cannot
be applied, since the blocking sizes will be very small, leading to memory-bound trailing matrix
updates. We need a di↵erent design mindset in order to develop high performance GPU kernels
to handle such type of workloads.

This paper presents highly optimized GPU kernels for batched LU factorization and matrix
inversion. The kernels can handle millions of matrices of sizes up to 32. We show a step-by-
step methodology, where incremental improvements in the kernel design lead to incremental
performance gains. We justify all of our design choices by showing the performance before
and after every incremental improvement. One of the main advantages of our design is the
elimination of the expensive intermediate row interchanges by delaying them to the end of the
kernel, which leads to a much faster kernel that produces the exact same result of a LAPACK-style
LU-factorization and inversion. The performance results show significant speedups against the
vendor-supplied CUBLAS kernels using a Pascal P100 GPU.

2 ddd

Matrix of size 10240 generated with positive � and arithmetic distribution of its singular values
�i = 1� (i�1

n�1)(1�
1

cond) and where its condition number is equal to 102.

3 Related Work

GPUs are well suited for embarrassingly parallel tasks on large chunks of data, such as matrix
multiplication(GEMM) [13][18]. The nearly optimal performance of GEMM on GPUs allowed the
development of high performance LAPACK algorithms [19][11]. Following a growing interest in
performing matrix computations on large batches of small matrices, an obvious start was to
develop a batched GEMM routine for GPUs. This has already been addressed in literature [7][4],
leading to developments of higher-level batched LAPACK algorithms. For example, Kurzak et
al. [12] introduced batched Cholesky factorization for single precision up to sizes 100 ⇥ 100,
while Dong et al. provided a more generic design [9]. Some contributions also proved the
ability of GPUs to deal with variable size batched workloads [4][3].

Wang et al. [20] introduced FPGA-based parallel LU factorization of large sparse matrices,
where the algorithm is reduced to factorizing many small matrices concurrently. Villa et al. [16]
developed a GPU-based batched LU factorization, which has been used in subsurface transport
simulation, where many chemical and microbiological reactions in a flow path are simulated in
parallel [17]. Batched matrix inversion is also introduced in the context of generating block-
Jacobi preconditioners [6]. The work presented by Haidar et al. [10] provides a batched LU

2

iterations
0 1 2 3 4 5 6 7 8

re
si

du
al

10-20

10-15

10-10

10-5

100

Convergence history for Iterative Refinement using GMRes
FP32->64 IRGM
FP16->64 IRGM
FP16->64 IRGM (Tensor Cores)

iterations
0 1 2 3 4 5 6 7 8

re
si

du
al

10-20

10-15

10-10

10-5

100

Convergence history for Classic Iterative Refinement
FP32->64 IR
FP16->64 IR
FP16->64 IR (Tensor Cores)

Leveraging Half Precision in HPC on V100

Matrix size
2k 4k 6k 8k10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0
2
4
6
8

10
12
14
16
18
20
22
24

Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy

FP64 dgesv

• solving Ax = b using FP64 LU

Flops = 2n3/(3 time)
meaning twice higher is twice faster

Factorization and Inversion of a Million Matrices on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The reason is that such software is optimized to handle large sizes of data with embarrassingly
parallel computational kernels such as matrix multiplication (GEMM). In dense linear algebra,
the idea of blocking enables the use of compute-intensive trailing matrix updates that are well-
suited for GPUs [19]. However, when the sizes are very small, the LAPACK-style blocking cannot
be applied, since the blocking sizes will be very small, leading to memory-bound trailing matrix
updates. We need a di↵erent design mindset in order to develop high performance GPU kernels
to handle such type of workloads.

This paper presents highly optimized GPU kernels for batched LU factorization and matrix
inversion. The kernels can handle millions of matrices of sizes up to 32. We show a step-by-
step methodology, where incremental improvements in the kernel design lead to incremental
performance gains. We justify all of our design choices by showing the performance before
and after every incremental improvement. One of the main advantages of our design is the
elimination of the expensive intermediate row interchanges by delaying them to the end of the
kernel, which leads to a much faster kernel that produces the exact same result of a LAPACK-style
LU-factorization and inversion. The performance results show significant speedups against the
vendor-supplied CUBLAS kernels using a Pascal P100 GPU.

2 ddd

Matrices generated with positive � and arithmetic distribution of its singular values
�i = 1� (i�1

n�1)(1�
1

cond) and where its condition number is equal to 102.

3 Related Work

GPUs are well suited for embarrassingly parallel tasks on large chunks of data, such as matrix
multiplication(GEMM) [13][18]. The nearly optimal performance of GEMM on GPUs allowed the
development of high performance LAPACK algorithms [19][11]. Following a growing interest in
performing matrix computations on large batches of small matrices, an obvious start was to
develop a batched GEMM routine for GPUs. This has already been addressed in literature [7][4],
leading to developments of higher-level batched LAPACK algorithms. For example, Kurzak et
al. [12] introduced batched Cholesky factorization for single precision up to sizes 100 ⇥ 100,
while Dong et al. provided a more generic design [9]. Some contributions also proved the
ability of GPUs to deal with variable size batched workloads [4][3].

Wang et al. [20] introduced FPGA-based parallel LU factorization of large sparse matrices,
where the algorithm is reduced to factorizing many small matrices concurrently. Villa et al. [16]
developed a GPU-based batched LU factorization, which has been used in subsurface transport
simulation, where many chemical and microbiological reactions in a flow path are simulated in
parallel [17]. Batched matrix inversion is also introduced in the context of generating block-
Jacobi preconditioners [6]. The work presented by Haidar et al. [10] provides a batched LU

2

Leveraging Half Precision in HPC on V100

Matrix size
2k 4k 6k 8k10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0
2
4
6
8

10
12
14
16
18
20
22
24

Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy

FP64 dgesv
FP32->64 dsgesv

• solving Ax = b using FP64 LU
• solving Ax = b using FP32 LU and

iterative refinement to achieve FP64
accuracy

Flops = 2n3/(3 time)
meaning twice higher is twice faster

Factorization and Inversion of a Million Matrices on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The reason is that such software is optimized to handle large sizes of data with embarrassingly
parallel computational kernels such as matrix multiplication (GEMM). In dense linear algebra,
the idea of blocking enables the use of compute-intensive trailing matrix updates that are well-
suited for GPUs [19]. However, when the sizes are very small, the LAPACK-style blocking cannot
be applied, since the blocking sizes will be very small, leading to memory-bound trailing matrix
updates. We need a di↵erent design mindset in order to develop high performance GPU kernels
to handle such type of workloads.

This paper presents highly optimized GPU kernels for batched LU factorization and matrix
inversion. The kernels can handle millions of matrices of sizes up to 32. We show a step-by-
step methodology, where incremental improvements in the kernel design lead to incremental
performance gains. We justify all of our design choices by showing the performance before
and after every incremental improvement. One of the main advantages of our design is the
elimination of the expensive intermediate row interchanges by delaying them to the end of the
kernel, which leads to a much faster kernel that produces the exact same result of a LAPACK-style
LU-factorization and inversion. The performance results show significant speedups against the
vendor-supplied CUBLAS kernels using a Pascal P100 GPU.

2 ddd

Matrices generated with positive � and arithmetic distribution of its singular values
�i = 1� (i�1

n�1)(1�
1

cond) and where its condition number is equal to 102.

3 Related Work

GPUs are well suited for embarrassingly parallel tasks on large chunks of data, such as matrix
multiplication(GEMM) [13][18]. The nearly optimal performance of GEMM on GPUs allowed the
development of high performance LAPACK algorithms [19][11]. Following a growing interest in
performing matrix computations on large batches of small matrices, an obvious start was to
develop a batched GEMM routine for GPUs. This has already been addressed in literature [7][4],
leading to developments of higher-level batched LAPACK algorithms. For example, Kurzak et
al. [12] introduced batched Cholesky factorization for single precision up to sizes 100 ⇥ 100,
while Dong et al. provided a more generic design [9]. Some contributions also proved the
ability of GPUs to deal with variable size batched workloads [4][3].

Wang et al. [20] introduced FPGA-based parallel LU factorization of large sparse matrices,
where the algorithm is reduced to factorizing many small matrices concurrently. Villa et al. [16]
developed a GPU-based batched LU factorization, which has been used in subsurface transport
simulation, where many chemical and microbiological reactions in a flow path are simulated in
parallel [17]. Batched matrix inversion is also introduced in the context of generating block-
Jacobi preconditioners [6]. The work presented by Haidar et al. [10] provides a batched LU

2

Leveraging Half Precision in HPC on V100

Matrix size
2k 4k 6k 8k10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0
2
4
6
8

10
12
14
16
18
20
22
24

Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhsgesv

• solving Ax = b using FP64 LU
• solving Ax = b using FP32 LU and

iterative refinement to achieve FP64
accuracy

• solving Ax = b using FP16 LU and
iterative refinement to achieve FP64
accuracy

Flops = 2n3/(3 time)
meaning twice higher is twice faster

Factorization and Inversion of a Million Matrices on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The reason is that such software is optimized to handle large sizes of data with embarrassingly
parallel computational kernels such as matrix multiplication (GEMM). In dense linear algebra,
the idea of blocking enables the use of compute-intensive trailing matrix updates that are well-
suited for GPUs [19]. However, when the sizes are very small, the LAPACK-style blocking cannot
be applied, since the blocking sizes will be very small, leading to memory-bound trailing matrix
updates. We need a di↵erent design mindset in order to develop high performance GPU kernels
to handle such type of workloads.

This paper presents highly optimized GPU kernels for batched LU factorization and matrix
inversion. The kernels can handle millions of matrices of sizes up to 32. We show a step-by-
step methodology, where incremental improvements in the kernel design lead to incremental
performance gains. We justify all of our design choices by showing the performance before
and after every incremental improvement. One of the main advantages of our design is the
elimination of the expensive intermediate row interchanges by delaying them to the end of the
kernel, which leads to a much faster kernel that produces the exact same result of a LAPACK-style
LU-factorization and inversion. The performance results show significant speedups against the
vendor-supplied CUBLAS kernels using a Pascal P100 GPU.

2 ddd

Matrices generated with positive � and arithmetic distribution of its singular values
�i = 1� (i�1

n�1)(1�
1

cond) and where its condition number is equal to 102.

3 Related Work

GPUs are well suited for embarrassingly parallel tasks on large chunks of data, such as matrix
multiplication(GEMM) [13][18]. The nearly optimal performance of GEMM on GPUs allowed the
development of high performance LAPACK algorithms [19][11]. Following a growing interest in
performing matrix computations on large batches of small matrices, an obvious start was to
develop a batched GEMM routine for GPUs. This has already been addressed in literature [7][4],
leading to developments of higher-level batched LAPACK algorithms. For example, Kurzak et
al. [12] introduced batched Cholesky factorization for single precision up to sizes 100 ⇥ 100,
while Dong et al. provided a more generic design [9]. Some contributions also proved the
ability of GPUs to deal with variable size batched workloads [4][3].

Wang et al. [20] introduced FPGA-based parallel LU factorization of large sparse matrices,
where the algorithm is reduced to factorizing many small matrices concurrently. Villa et al. [16]
developed a GPU-based batched LU factorization, which has been used in subsurface transport
simulation, where many chemical and microbiological reactions in a flow path are simulated in
parallel [17]. Batched matrix inversion is also introduced in the context of generating block-
Jacobi preconditioners [6]. The work presented by Haidar et al. [10] provides a batched LU

2

Leveraging Half Precision in HPC on V100

Matrix size
2k 4k 6k 8k10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0
2
4
6
8

10
12
14
16
18
20
22
24

Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhsgesv
FP16->64 dshtgesv

• solving Ax = b using FP64 LU
• solving Ax = b using FP32 LU and

iterative refinement to achieve FP64
accuracy

• solving Ax = b using FP16 LU and
iterative refinement to achieve FP64
accuracy

• solving Ax = b using FP16 Tensor Cores
LU and iterative refinement to achieve
FP64 accuracy

Flops = 2n3/(3 time)
meaning twice higher is twice faster

Factorization and Inversion of a Million Matrices on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The reason is that such software is optimized to handle large sizes of data with embarrassingly
parallel computational kernels such as matrix multiplication (GEMM). In dense linear algebra,
the idea of blocking enables the use of compute-intensive trailing matrix updates that are well-
suited for GPUs [19]. However, when the sizes are very small, the LAPACK-style blocking cannot
be applied, since the blocking sizes will be very small, leading to memory-bound trailing matrix
updates. We need a di↵erent design mindset in order to develop high performance GPU kernels
to handle such type of workloads.

This paper presents highly optimized GPU kernels for batched LU factorization and matrix
inversion. The kernels can handle millions of matrices of sizes up to 32. We show a step-by-
step methodology, where incremental improvements in the kernel design lead to incremental
performance gains. We justify all of our design choices by showing the performance before
and after every incremental improvement. One of the main advantages of our design is the
elimination of the expensive intermediate row interchanges by delaying them to the end of the
kernel, which leads to a much faster kernel that produces the exact same result of a LAPACK-style
LU-factorization and inversion. The performance results show significant speedups against the
vendor-supplied CUBLAS kernels using a Pascal P100 GPU.

2 ddd

Matrices generated with positive � and arithmetic distribution of its singular values
�i = 1� (i�1

n�1)(1�
1

cond) and where its condition number is equal to 102.

3 Related Work

GPUs are well suited for embarrassingly parallel tasks on large chunks of data, such as matrix
multiplication(GEMM) [13][18]. The nearly optimal performance of GEMM on GPUs allowed the
development of high performance LAPACK algorithms [19][11]. Following a growing interest in
performing matrix computations on large batches of small matrices, an obvious start was to
develop a batched GEMM routine for GPUs. This has already been addressed in literature [7][4],
leading to developments of higher-level batched LAPACK algorithms. For example, Kurzak et
al. [12] introduced batched Cholesky factorization for single precision up to sizes 100 ⇥ 100,
while Dong et al. provided a more generic design [9]. Some contributions also proved the
ability of GPUs to deal with variable size batched workloads [4][3].

Wang et al. [20] introduced FPGA-based parallel LU factorization of large sparse matrices,
where the algorithm is reduced to factorizing many small matrices concurrently. Villa et al. [16]
developed a GPU-based batched LU factorization, which has been used in subsurface transport
simulation, where many chemical and microbiological reactions in a flow path are simulated in
parallel [17]. Batched matrix inversion is also introduced in the context of generating block-
Jacobi preconditioners [6]. The work presented by Haidar et al. [10] provides a batched LU

2

4X

Leveraging Half Precision in HPC on V100

iterations
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

re
si

du
al

10-20

10-15

10-10

10-5

100

Convergence history for Iterative Refinement using GMRes
FP32->64 IRGM
FP16->64 IRGM
FP16->64 IRGM (Tensor Cores)

Factorization and Inversion of a Million Matrices on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The reason is that such software is optimized to handle large sizes of data with embarrassingly
parallel computational kernels such as matrix multiplication (GEMM). In dense linear algebra,
the idea of blocking enables the use of compute-intensive trailing matrix updates that are well-
suited for GPUs [19]. However, when the sizes are very small, the LAPACK-style blocking cannot
be applied, since the blocking sizes will be very small, leading to memory-bound trailing matrix
updates. We need a di↵erent design mindset in order to develop high performance GPU kernels
to handle such type of workloads.

This paper presents highly optimized GPU kernels for batched LU factorization and matrix
inversion. The kernels can handle millions of matrices of sizes up to 32. We show a step-by-
step methodology, where incremental improvements in the kernel design lead to incremental
performance gains. We justify all of our design choices by showing the performance before
and after every incremental improvement. One of the main advantages of our design is the
elimination of the expensive intermediate row interchanges by delaying them to the end of the
kernel, which leads to a much faster kernel that produces the exact same result of a LAPACK-style
LU-factorization and inversion. The performance results show significant speedups against the
vendor-supplied CUBLAS kernels using a Pascal P100 GPU.

2 ddd

Matrix of size 10240 generated with positive � and clustered singular values,
�i=(1, · · · , 1, 1

cond) and where its condition number is equal to 102.

3 Related Work

GPUs are well suited for embarrassingly parallel tasks on large chunks of data, such as matrix
multiplication(GEMM) [13][18]. The nearly optimal performance of GEMM on GPUs allowed the
development of high performance LAPACK algorithms [19][11]. Following a growing interest in
performing matrix computations on large batches of small matrices, an obvious start was to
develop a batched GEMM routine for GPUs. This has already been addressed in literature [7][4],
leading to developments of higher-level batched LAPACK algorithms. For example, Kurzak et
al. [12] introduced batched Cholesky factorization for single precision up to sizes 100 ⇥ 100,
while Dong et al. provided a more generic design [9]. Some contributions also proved the
ability of GPUs to deal with variable size batched workloads [4][3].

Wang et al. [20] introduced FPGA-based parallel LU factorization of large sparse matrices,
where the algorithm is reduced to factorizing many small matrices concurrently. Villa et al. [16]
developed a GPU-based batched LU factorization, which has been used in subsurface transport
simulation, where many chemical and microbiological reactions in a flow path are simulated in
parallel [17]. Batched matrix inversion is also introduced in the context of generating block-
Jacobi preconditioners [6]. The work presented by Haidar et al. [10] provides a batched LU

2

iterations
0 17 34 51 68 85 102 119 136 153 170 187

re
si

du
al

10-20

10-15

10-10

10-5

100

Convergence history for Classic Iterative Refinement
FP32->64 IR
FP16->64 IR
FP16->64 IR (Tensor Cores)

Leveraging Half Precision in HPC on V100

Matrix size
2k 4k 6k 8k10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0
2
4
6
8

10
12
14
16
18
20
22
24

Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy

FP64 dgesv

Factorization and Inversion of a Million Matrices on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The reason is that such software is optimized to handle large sizes of data with embarrassingly
parallel computational kernels such as matrix multiplication (GEMM). In dense linear algebra,
the idea of blocking enables the use of compute-intensive trailing matrix updates that are well-
suited for GPUs [19]. However, when the sizes are very small, the LAPACK-style blocking cannot
be applied, since the blocking sizes will be very small, leading to memory-bound trailing matrix
updates. We need a di↵erent design mindset in order to develop high performance GPU kernels
to handle such type of workloads.

This paper presents highly optimized GPU kernels for batched LU factorization and matrix
inversion. The kernels can handle millions of matrices of sizes up to 32. We show a step-by-
step methodology, where incremental improvements in the kernel design lead to incremental
performance gains. We justify all of our design choices by showing the performance before
and after every incremental improvement. One of the main advantages of our design is the
elimination of the expensive intermediate row interchanges by delaying them to the end of the
kernel, which leads to a much faster kernel that produces the exact same result of a LAPACK-style
LU-factorization and inversion. The performance results show significant speedups against the
vendor-supplied CUBLAS kernels using a Pascal P100 GPU.

2 ddd

Matrices generated with positive � and clustered distribution of its singular values
�i=(1, · · · , 1, 1

cond) and where its condition number is equal to 102.

3 Related Work

GPUs are well suited for embarrassingly parallel tasks on large chunks of data, such as matrix
multiplication(GEMM) [13][18]. The nearly optimal performance of GEMM on GPUs allowed the
development of high performance LAPACK algorithms [19][11]. Following a growing interest in
performing matrix computations on large batches of small matrices, an obvious start was to
develop a batched GEMM routine for GPUs. This has already been addressed in literature [7][4],
leading to developments of higher-level batched LAPACK algorithms. For example, Kurzak et
al. [12] introduced batched Cholesky factorization for single precision up to sizes 100 ⇥ 100,
while Dong et al. provided a more generic design [9]. Some contributions also proved the
ability of GPUs to deal with variable size batched workloads [4][3].

Wang et al. [20] introduced FPGA-based parallel LU factorization of large sparse matrices,
where the algorithm is reduced to factorizing many small matrices concurrently. Villa et al. [16]
developed a GPU-based batched LU factorization, which has been used in subsurface transport
simulation, where many chemical and microbiological reactions in a flow path are simulated in
parallel [17]. Batched matrix inversion is also introduced in the context of generating block-
Jacobi preconditioners [6]. The work presented by Haidar et al. [10] provides a batched LU

2

• solving Ax = b using FP64 LU

Flops = 2n3/(3 time)
meaning twice higher is twice faster

Leveraging Half Precision in HPC on V100

Matrix size
2k 4k 6k 8k10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0
2
4
6
8

10
12
14
16
18
20
22
24

Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy

FP64 dgesv
FP32->64 dsgesv

Factorization and Inversion of a Million Matrices on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The reason is that such software is optimized to handle large sizes of data with embarrassingly
parallel computational kernels such as matrix multiplication (GEMM). In dense linear algebra,
the idea of blocking enables the use of compute-intensive trailing matrix updates that are well-
suited for GPUs [19]. However, when the sizes are very small, the LAPACK-style blocking cannot
be applied, since the blocking sizes will be very small, leading to memory-bound trailing matrix
updates. We need a di↵erent design mindset in order to develop high performance GPU kernels
to handle such type of workloads.

This paper presents highly optimized GPU kernels for batched LU factorization and matrix
inversion. The kernels can handle millions of matrices of sizes up to 32. We show a step-by-
step methodology, where incremental improvements in the kernel design lead to incremental
performance gains. We justify all of our design choices by showing the performance before
and after every incremental improvement. One of the main advantages of our design is the
elimination of the expensive intermediate row interchanges by delaying them to the end of the
kernel, which leads to a much faster kernel that produces the exact same result of a LAPACK-style
LU-factorization and inversion. The performance results show significant speedups against the
vendor-supplied CUBLAS kernels using a Pascal P100 GPU.

2 ddd

Matrices generated with positive � and clustered distribution of its singular values
�i=(1, · · · , 1, 1

cond) and where its condition number is equal to 102.

3 Related Work

GPUs are well suited for embarrassingly parallel tasks on large chunks of data, such as matrix
multiplication(GEMM) [13][18]. The nearly optimal performance of GEMM on GPUs allowed the
development of high performance LAPACK algorithms [19][11]. Following a growing interest in
performing matrix computations on large batches of small matrices, an obvious start was to
develop a batched GEMM routine for GPUs. This has already been addressed in literature [7][4],
leading to developments of higher-level batched LAPACK algorithms. For example, Kurzak et
al. [12] introduced batched Cholesky factorization for single precision up to sizes 100 ⇥ 100,
while Dong et al. provided a more generic design [9]. Some contributions also proved the
ability of GPUs to deal with variable size batched workloads [4][3].

Wang et al. [20] introduced FPGA-based parallel LU factorization of large sparse matrices,
where the algorithm is reduced to factorizing many small matrices concurrently. Villa et al. [16]
developed a GPU-based batched LU factorization, which has been used in subsurface transport
simulation, where many chemical and microbiological reactions in a flow path are simulated in
parallel [17]. Batched matrix inversion is also introduced in the context of generating block-
Jacobi preconditioners [6]. The work presented by Haidar et al. [10] provides a batched LU

2

• solving Ax = b using FP64 LU
• solving Ax = b using FP32 LU and

iterative refinement to achieve FP64
accuracy

Flops = 2n3/(3 time)
meaning twice higher is twice faster

Leveraging Half Precision in HPC on V100

Matrix size
2k 4k 6k 8k10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0
2
4
6
8

10
12
14
16
18
20
22
24

Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhsgesv

Factorization and Inversion of a Million Matrices on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The reason is that such software is optimized to handle large sizes of data with embarrassingly
parallel computational kernels such as matrix multiplication (GEMM). In dense linear algebra,
the idea of blocking enables the use of compute-intensive trailing matrix updates that are well-
suited for GPUs [19]. However, when the sizes are very small, the LAPACK-style blocking cannot
be applied, since the blocking sizes will be very small, leading to memory-bound trailing matrix
updates. We need a di↵erent design mindset in order to develop high performance GPU kernels
to handle such type of workloads.

This paper presents highly optimized GPU kernels for batched LU factorization and matrix
inversion. The kernels can handle millions of matrices of sizes up to 32. We show a step-by-
step methodology, where incremental improvements in the kernel design lead to incremental
performance gains. We justify all of our design choices by showing the performance before
and after every incremental improvement. One of the main advantages of our design is the
elimination of the expensive intermediate row interchanges by delaying them to the end of the
kernel, which leads to a much faster kernel that produces the exact same result of a LAPACK-style
LU-factorization and inversion. The performance results show significant speedups against the
vendor-supplied CUBLAS kernels using a Pascal P100 GPU.

2 ddd

Matrices generated with positive � and clustered distribution of its singular values
�i=(1, · · · , 1, 1

cond) and where its condition number is equal to 102.

3 Related Work

GPUs are well suited for embarrassingly parallel tasks on large chunks of data, such as matrix
multiplication(GEMM) [13][18]. The nearly optimal performance of GEMM on GPUs allowed the
development of high performance LAPACK algorithms [19][11]. Following a growing interest in
performing matrix computations on large batches of small matrices, an obvious start was to
develop a batched GEMM routine for GPUs. This has already been addressed in literature [7][4],
leading to developments of higher-level batched LAPACK algorithms. For example, Kurzak et
al. [12] introduced batched Cholesky factorization for single precision up to sizes 100 ⇥ 100,
while Dong et al. provided a more generic design [9]. Some contributions also proved the
ability of GPUs to deal with variable size batched workloads [4][3].

Wang et al. [20] introduced FPGA-based parallel LU factorization of large sparse matrices,
where the algorithm is reduced to factorizing many small matrices concurrently. Villa et al. [16]
developed a GPU-based batched LU factorization, which has been used in subsurface transport
simulation, where many chemical and microbiological reactions in a flow path are simulated in
parallel [17]. Batched matrix inversion is also introduced in the context of generating block-
Jacobi preconditioners [6]. The work presented by Haidar et al. [10] provides a batched LU

2

• solving Ax = b using FP64 LU
• solving Ax = b using FP32 LU and

iterative refinement to achieve FP64
accuracy

• solving Ax = b using FP16 LU and
iterative refinement to achieve FP64
accuracy

Flops = 2n3/(3 time)
meaning twice higher is twice faster

slow convergence affect
the performance

Leveraging Half Precision in HPC on V100

Matrix size
2k 4k 6k 8k10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0
2
4
6
8

10
12
14
16
18
20
22
24

Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhsgesv
FP16->64 dshtgesv

Factorization and Inversion of a Million Matrices on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The reason is that such software is optimized to handle large sizes of data with embarrassingly
parallel computational kernels such as matrix multiplication (GEMM). In dense linear algebra,
the idea of blocking enables the use of compute-intensive trailing matrix updates that are well-
suited for GPUs [19]. However, when the sizes are very small, the LAPACK-style blocking cannot
be applied, since the blocking sizes will be very small, leading to memory-bound trailing matrix
updates. We need a di↵erent design mindset in order to develop high performance GPU kernels
to handle such type of workloads.

This paper presents highly optimized GPU kernels for batched LU factorization and matrix
inversion. The kernels can handle millions of matrices of sizes up to 32. We show a step-by-
step methodology, where incremental improvements in the kernel design lead to incremental
performance gains. We justify all of our design choices by showing the performance before
and after every incremental improvement. One of the main advantages of our design is the
elimination of the expensive intermediate row interchanges by delaying them to the end of the
kernel, which leads to a much faster kernel that produces the exact same result of a LAPACK-style
LU-factorization and inversion. The performance results show significant speedups against the
vendor-supplied CUBLAS kernels using a Pascal P100 GPU.

2 ddd

Matrices generated with positive � and clustered distribution of its singular values
�i=(1, · · · , 1, 1

cond) and where its condition number is equal to 102.

3 Related Work

GPUs are well suited for embarrassingly parallel tasks on large chunks of data, such as matrix
multiplication(GEMM) [13][18]. The nearly optimal performance of GEMM on GPUs allowed the
development of high performance LAPACK algorithms [19][11]. Following a growing interest in
performing matrix computations on large batches of small matrices, an obvious start was to
develop a batched GEMM routine for GPUs. This has already been addressed in literature [7][4],
leading to developments of higher-level batched LAPACK algorithms. For example, Kurzak et
al. [12] introduced batched Cholesky factorization for single precision up to sizes 100 ⇥ 100,
while Dong et al. provided a more generic design [9]. Some contributions also proved the
ability of GPUs to deal with variable size batched workloads [4][3].

Wang et al. [20] introduced FPGA-based parallel LU factorization of large sparse matrices,
where the algorithm is reduced to factorizing many small matrices concurrently. Villa et al. [16]
developed a GPU-based batched LU factorization, which has been used in subsurface transport
simulation, where many chemical and microbiological reactions in a flow path are simulated in
parallel [17]. Batched matrix inversion is also introduced in the context of generating block-
Jacobi preconditioners [6]. The work presented by Haidar et al. [10] provides a batched LU

2

• solving Ax = b using FP64 LU
• solving Ax = b using FP32 LU and

iterative refinement to achieve FP64
accuracy

• solving Ax = b using FP16 LU and
iterative refinement to achieve FP64
accuracy

• solving Ax = b using FP16 Tensor Cores
LU and iterative refinement to achieve
FP64 accuracy

Flops = 2n3/(3 time)
meaning twice higher is twice faster

4X

Use Mixed Precision algorithms
ØAchieve higher performance à faster time to solution
ØReduce power consumption reduce power consumption by decreasing the

execution time à Energy Savings !!!

Leveraging Half Precision in HPC on V100

Leveraging Half Precision in HPC
Power awareness

Matrix size
2k 4k 6k 8k10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0
2
4
6
8

10
12
14
16
18
20
22
24

Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhsgesv
FP16->64 dshtgesv

• Let’s go back to this performance graph
of solving Ax = b using the four different
algorithms that achieve FP64 solution

Flops = 2n3/(3 time)
meaning twice higher is twice faster

Factorization and Inversion of a Million Matrices on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The reason is that such software is optimized to handle large sizes of data with embarrassingly
parallel computational kernels such as matrix multiplication (GEMM). In dense linear algebra,
the idea of blocking enables the use of compute-intensive trailing matrix updates that are well-
suited for GPUs [19]. However, when the sizes are very small, the LAPACK-style blocking cannot
be applied, since the blocking sizes will be very small, leading to memory-bound trailing matrix
updates. We need a di↵erent design mindset in order to develop high performance GPU kernels
to handle such type of workloads.

This paper presents highly optimized GPU kernels for batched LU factorization and matrix
inversion. The kernels can handle millions of matrices of sizes up to 32. We show a step-by-
step methodology, where incremental improvements in the kernel design lead to incremental
performance gains. We justify all of our design choices by showing the performance before
and after every incremental improvement. One of the main advantages of our design is the
elimination of the expensive intermediate row interchanges by delaying them to the end of the
kernel, which leads to a much faster kernel that produces the exact same result of a LAPACK-style
LU-factorization and inversion. The performance results show significant speedups against the
vendor-supplied CUBLAS kernels using a Pascal P100 GPU.

2 ddd

Matrices generated with positive � and arithmetic distribution of its singular values
�i = 1� (i�1

n�1)(1�
1

cond) and where its condition number is equal to 102.

3 Related Work

GPUs are well suited for embarrassingly parallel tasks on large chunks of data, such as matrix
multiplication(GEMM) [13][18]. The nearly optimal performance of GEMM on GPUs allowed the
development of high performance LAPACK algorithms [19][11]. Following a growing interest in
performing matrix computations on large batches of small matrices, an obvious start was to
develop a batched GEMM routine for GPUs. This has already been addressed in literature [7][4],
leading to developments of higher-level batched LAPACK algorithms. For example, Kurzak et
al. [12] introduced batched Cholesky factorization for single precision up to sizes 100 ⇥ 100,
while Dong et al. provided a more generic design [9]. Some contributions also proved the
ability of GPUs to deal with variable size batched workloads [4][3].

Wang et al. [20] introduced FPGA-based parallel LU factorization of large sparse matrices,
where the algorithm is reduced to factorizing many small matrices concurrently. Villa et al. [16]
developed a GPU-based batched LU factorization, which has been used in subsurface transport
simulation, where many chemical and microbiological reactions in a flow path are simulated in
parallel [17]. Batched matrix inversion is also introduced in the context of generating block-
Jacobi preconditioners [6]. The work presented by Haidar et al. [10] provides a batched LU

2

Leveraging Half Precision in HPC
Power awareness

Factorization and Inversion of a Million Matrices on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The reason is that such software is optimized to handle large sizes of data with embarrassingly
parallel computational kernels such as matrix multiplication (GEMM). In dense linear algebra,
the idea of blocking enables the use of compute-intensive trailing matrix updates that are well-
suited for GPUs [19]. However, when the sizes are very small, the LAPACK-style blocking cannot
be applied, since the blocking sizes will be very small, leading to memory-bound trailing matrix
updates. We need a di↵erent design mindset in order to develop high performance GPU kernels
to handle such type of workloads.

This paper presents highly optimized GPU kernels for batched LU factorization and matrix
inversion. The kernels can handle millions of matrices of sizes up to 32. We show a step-by-
step methodology, where incremental improvements in the kernel design lead to incremental
performance gains. We justify all of our design choices by showing the performance before
and after every incremental improvement. One of the main advantages of our design is the
elimination of the expensive intermediate row interchanges by delaying them to the end of the
kernel, which leads to a much faster kernel that produces the exact same result of a LAPACK-style
LU-factorization and inversion. The performance results show significant speedups against the
vendor-supplied CUBLAS kernels using a Pascal P100 GPU.

2 ddd

Matrices generated with positive � and arithmetic distribution of its singular values
�i = 1� (i�1

n�1)(1�
1

cond) and where its condition number is equal to 102.

3 Related Work

GPUs are well suited for embarrassingly parallel tasks on large chunks of data, such as matrix
multiplication(GEMM) [13][18]. The nearly optimal performance of GEMM on GPUs allowed the
development of high performance LAPACK algorithms [19][11]. Following a growing interest in
performing matrix computations on large batches of small matrices, an obvious start was to
develop a batched GEMM routine for GPUs. This has already been addressed in literature [7][4],
leading to developments of higher-level batched LAPACK algorithms. For example, Kurzak et
al. [12] introduced batched Cholesky factorization for single precision up to sizes 100 ⇥ 100,
while Dong et al. provided a more generic design [9]. Some contributions also proved the
ability of GPUs to deal with variable size batched workloads [4][3].

Wang et al. [20] introduced FPGA-based parallel LU factorization of large sparse matrices,
where the algorithm is reduced to factorizing many small matrices concurrently. Villa et al. [16]
developed a GPU-based batched LU factorization, which has been used in subsurface transport
simulation, where many chemical and microbiological reactions in a flow path are simulated in
parallel [17]. Batched matrix inversion is also introduced in the context of generating block-
Jacobi preconditioners [6]. The work presented by Haidar et al. [10] provides a batched LU

2

Time (sec)
0 1 2 3 4 5 6 7

A
ve

ra
ge

 p
ow

er
 (W

at
ts

)

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460

5.5

14
2021

Performance
in Tflop/s

Gflops/Watts
Joules

Solving Ax=b on Nvidia V100

FP64 solver dgesv

• Power consumption of the FP64 algorithm to
solve Ax=b for a matrix of size 34K, it achieve
5.5 Tflop/s and requires about 2021 joules
providing about 14 Gflops/Watts.

CPU Intel Xeon E5-2650 v3 (Haswell)
2x10 cores @ 2.30 GHz V100 NVIDIA Volta GPU

80 MP x 64 @ 1.38 GHz

Power is for GPU + CPU + DRAM

Leveraging Half Precision in HPC
Power awareness

Factorization and Inversion of a Million Matrices on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The reason is that such software is optimized to handle large sizes of data with embarrassingly
parallel computational kernels such as matrix multiplication (GEMM). In dense linear algebra,
the idea of blocking enables the use of compute-intensive trailing matrix updates that are well-
suited for GPUs [19]. However, when the sizes are very small, the LAPACK-style blocking cannot
be applied, since the blocking sizes will be very small, leading to memory-bound trailing matrix
updates. We need a di↵erent design mindset in order to develop high performance GPU kernels
to handle such type of workloads.

This paper presents highly optimized GPU kernels for batched LU factorization and matrix
inversion. The kernels can handle millions of matrices of sizes up to 32. We show a step-by-
step methodology, where incremental improvements in the kernel design lead to incremental
performance gains. We justify all of our design choices by showing the performance before
and after every incremental improvement. One of the main advantages of our design is the
elimination of the expensive intermediate row interchanges by delaying them to the end of the
kernel, which leads to a much faster kernel that produces the exact same result of a LAPACK-style
LU-factorization and inversion. The performance results show significant speedups against the
vendor-supplied CUBLAS kernels using a Pascal P100 GPU.

2 ddd

Matrices generated with positive � and arithmetic distribution of its singular values
�i = 1� (i�1

n�1)(1�
1

cond) and where its condition number is equal to 102.

3 Related Work

GPUs are well suited for embarrassingly parallel tasks on large chunks of data, such as matrix
multiplication(GEMM) [13][18]. The nearly optimal performance of GEMM on GPUs allowed the
development of high performance LAPACK algorithms [19][11]. Following a growing interest in
performing matrix computations on large batches of small matrices, an obvious start was to
develop a batched GEMM routine for GPUs. This has already been addressed in literature [7][4],
leading to developments of higher-level batched LAPACK algorithms. For example, Kurzak et
al. [12] introduced batched Cholesky factorization for single precision up to sizes 100 ⇥ 100,
while Dong et al. provided a more generic design [9]. Some contributions also proved the
ability of GPUs to deal with variable size batched workloads [4][3].

Wang et al. [20] introduced FPGA-based parallel LU factorization of large sparse matrices,
where the algorithm is reduced to factorizing many small matrices concurrently. Villa et al. [16]
developed a GPU-based batched LU factorization, which has been used in subsurface transport
simulation, where many chemical and microbiological reactions in a flow path are simulated in
parallel [17]. Batched matrix inversion is also introduced in the context of generating block-
Jacobi preconditioners [6]. The work presented by Haidar et al. [10] provides a batched LU

2

Time (sec)
0 1 2 3 4 5 6 7

A
ve

ra
ge

 p
ow

er
 (W

at
ts

)

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460

5.5

14
2021

Performance
in Tflop/s

Gflops/Watts
Joules

10.7

30
1041

Solving Ax=b on Nvidia V100

FP64 solver dgesv
FP32-->64 solver dsgesv

• Power consumption of the FP64 algorithm to
solve Ax=b for a matrix of size 34K, it achieve
5.5 Tflop/s and requires about 2021 joules
providing about 14 Gflops/Watts.

• Power consumption of the mixed precision
FP32à64 algorithm to solve Ax=b for a
matrix of size 34K, it achieve 10.7 Tflop/s and
requires about 1041 joules providing about
30 Gflops/Watts.

Mixed precision techniques can provide
a large gain in energy efficiency

Iterative refinement

Leveraging Half Precision in HPC
Power awareness

Factorization and Inversion of a Million Matrices on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The reason is that such software is optimized to handle large sizes of data with embarrassingly
parallel computational kernels such as matrix multiplication (GEMM). In dense linear algebra,
the idea of blocking enables the use of compute-intensive trailing matrix updates that are well-
suited for GPUs [19]. However, when the sizes are very small, the LAPACK-style blocking cannot
be applied, since the blocking sizes will be very small, leading to memory-bound trailing matrix
updates. We need a di↵erent design mindset in order to develop high performance GPU kernels
to handle such type of workloads.

This paper presents highly optimized GPU kernels for batched LU factorization and matrix
inversion. The kernels can handle millions of matrices of sizes up to 32. We show a step-by-
step methodology, where incremental improvements in the kernel design lead to incremental
performance gains. We justify all of our design choices by showing the performance before
and after every incremental improvement. One of the main advantages of our design is the
elimination of the expensive intermediate row interchanges by delaying them to the end of the
kernel, which leads to a much faster kernel that produces the exact same result of a LAPACK-style
LU-factorization and inversion. The performance results show significant speedups against the
vendor-supplied CUBLAS kernels using a Pascal P100 GPU.

2 ddd

Matrices generated with positive � and arithmetic distribution of its singular values
�i = 1� (i�1

n�1)(1�
1

cond) and where its condition number is equal to 102.

3 Related Work

GPUs are well suited for embarrassingly parallel tasks on large chunks of data, such as matrix
multiplication(GEMM) [13][18]. The nearly optimal performance of GEMM on GPUs allowed the
development of high performance LAPACK algorithms [19][11]. Following a growing interest in
performing matrix computations on large batches of small matrices, an obvious start was to
develop a batched GEMM routine for GPUs. This has already been addressed in literature [7][4],
leading to developments of higher-level batched LAPACK algorithms. For example, Kurzak et
al. [12] introduced batched Cholesky factorization for single precision up to sizes 100 ⇥ 100,
while Dong et al. provided a more generic design [9]. Some contributions also proved the
ability of GPUs to deal with variable size batched workloads [4][3].

Wang et al. [20] introduced FPGA-based parallel LU factorization of large sparse matrices,
where the algorithm is reduced to factorizing many small matrices concurrently. Villa et al. [16]
developed a GPU-based batched LU factorization, which has been used in subsurface transport
simulation, where many chemical and microbiological reactions in a flow path are simulated in
parallel [17]. Batched matrix inversion is also introduced in the context of generating block-
Jacobi preconditioners [6]. The work presented by Haidar et al. [10] provides a batched LU

2

• Power consumption of the FP64 algorithm to
solve Ax=b for a matrix of size 34K, it achieve
5.5 Tflop/s and requires about 2021 joules
providing about 14 Gflops/Watts.

• Power consumption of the mixed precision
FP32à64 algorithm to solve Ax=b for a
matrix of size 34K, it achieve 10.7 Tflop/s and
requires about 1041 joules providing about
30 Gflops/Watts.

• Power consumption of the mixed precision
FP16à64 algorithm to solve Ax=b for a
matrix of size 34K, it achieve 16.8 Tflop/s and
requires about 609 joules providing about
48 Gflops/Watts.

Mixed precision techniques can provide
a large gain in energy efficiency

Time (sec)
0 1 2 3 4 5 6 7

A
ve

ra
ge

 p
ow

er
 (W

at
ts

)

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460

5.5

14
2021

Performance
in Tflop/s

Gflops/Watts
Joules

10.7

30
1041

16.8

48
609

Solving Ax=b on Nvidia V100

FP64 solver dgesv
FP32-->64 solver dsgesv
FP16-->64 solver dhgesv

Leveraging Half Precision in HPC
Power awareness

Factorization and Inversion of a Million Matrices on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The reason is that such software is optimized to handle large sizes of data with embarrassingly
parallel computational kernels such as matrix multiplication (GEMM). In dense linear algebra,
the idea of blocking enables the use of compute-intensive trailing matrix updates that are well-
suited for GPUs [19]. However, when the sizes are very small, the LAPACK-style blocking cannot
be applied, since the blocking sizes will be very small, leading to memory-bound trailing matrix
updates. We need a di↵erent design mindset in order to develop high performance GPU kernels
to handle such type of workloads.

This paper presents highly optimized GPU kernels for batched LU factorization and matrix
inversion. The kernels can handle millions of matrices of sizes up to 32. We show a step-by-
step methodology, where incremental improvements in the kernel design lead to incremental
performance gains. We justify all of our design choices by showing the performance before
and after every incremental improvement. One of the main advantages of our design is the
elimination of the expensive intermediate row interchanges by delaying them to the end of the
kernel, which leads to a much faster kernel that produces the exact same result of a LAPACK-style
LU-factorization and inversion. The performance results show significant speedups against the
vendor-supplied CUBLAS kernels using a Pascal P100 GPU.

2 ddd

Matrices generated with positive � and arithmetic distribution of its singular values
�i = 1� (i�1

n�1)(1�
1

cond) and where its condition number is equal to 102.

3 Related Work

GPUs are well suited for embarrassingly parallel tasks on large chunks of data, such as matrix
multiplication(GEMM) [13][18]. The nearly optimal performance of GEMM on GPUs allowed the
development of high performance LAPACK algorithms [19][11]. Following a growing interest in
performing matrix computations on large batches of small matrices, an obvious start was to
develop a batched GEMM routine for GPUs. This has already been addressed in literature [7][4],
leading to developments of higher-level batched LAPACK algorithms. For example, Kurzak et
al. [12] introduced batched Cholesky factorization for single precision up to sizes 100 ⇥ 100,
while Dong et al. provided a more generic design [9]. Some contributions also proved the
ability of GPUs to deal with variable size batched workloads [4][3].

Wang et al. [20] introduced FPGA-based parallel LU factorization of large sparse matrices,
where the algorithm is reduced to factorizing many small matrices concurrently. Villa et al. [16]
developed a GPU-based batched LU factorization, which has been used in subsurface transport
simulation, where many chemical and microbiological reactions in a flow path are simulated in
parallel [17]. Batched matrix inversion is also introduced in the context of generating block-
Jacobi preconditioners [6]. The work presented by Haidar et al. [10] provides a batched LU

2

• Power consumption of the FP64 algorithm to
solve Ax=b for a matrix of size 34K, it achieve
5.5 Tflop/s and requires about 2021 joules
providing about 14 Gflops/Watts.

• Power consumption of the mixed precision
FP32à64 algorithm to solve Ax=b for a
matrix of size 34K, it achieve 10.7 Tflop/s and
requires about 1041 joules providing about
30 Gflops/Watts.

• Power consumption of the mixed precision
FP16à64 algorithm to solve Ax=b for a
matrix of size 34K, it achieve 16.8 Tflop/s and
requires about 609 joules providing about
48 Gflops/Watts.

• Power consumption of the mixed precision
FP16à64 TC algorithm using Tensor Cores
to solve Ax=b for a matrix of size 34K, it
achieve 24 Tflop/s and requires about 470
joules providing about 74 Gflops/Watts.

Mixed precision techniques can provide
a large gain in energy efficiency

Time (sec)
0 1 2 3 4 5 6 7

A
ve

ra
ge

 p
ow

er
 (W

at
ts

)

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460

5.5

14
2021

Performance
in Tflop/s

Gflops/Watts
Joules

10.7

30
1041

16.8

48
609

24.0

74
470

Solving Ax=b on Nvidia V100

FP64 solver dgesv
FP32-->64 solver dsgesv
FP16-->64 solver dhgesv
FP16-->64 solver dhgesv (TC)

Critical Issues and Challenges at Peta & Exascale for
Algorithm and Software Design

• Synchronization-reducing algorithms
• Break Fork-Join model

• Communication-reducing algorithms
• Use methods which have lower bound on communication

• Mixed precision methods – from FP16 to FP64
• Leverage speed of lower precision but retain the accuracy of higher

precision
• Autotuning

• Today’s machines are too complicated, build “smarts” into software to
adapt to the hardware

• Fault resilient algorithms
• Implement algorithms that can recover from failures/bit flips

• Reproducibility of results
• Today we can’t guarantee this, without a penalty. We understand the

issues, but some of our “colleagues” have a hard time with this.

Collaborators and Support
MAGMA team
http://icl.cs.utk.edu/magma
PLASMA team
http://icl.cs.utk.edu/plasma

Collaborating partners
University of Tennessee, Knoxville
University of California, Berkeley
University of Colorado, Denver
University of Manchester

