
MPI  Communication  Optimization  of  Massively  Parallel  Applications  
Fatimah  Al-­Ruwai  &  Majdi  Baddourah

Saudi  Aramco,  Dhahran  31311,  Saudi  Arabia

In
tr
od

uc
tio

n
In reservoir simulation, high resolution models have become the norm to model and capture the detailed characteristics of fluids flow in hydrocarbon bearing reservoir. This leads to enhanced understanding of the physics and accuracy of
the simulation results. Such detailed reservoir models require huge compute capacity to run efficiently with acceptable runtime. Our simulation models run on thousands of cores for several hours. In order to address such challenge, Saudi
Aramco has been acquiring and utilizing the best in HPC clustering technologies for its parallel reservoir simulation studies. As shown in Figure 1, the demand for simulation studies is increasing in Saudi Aramco as huge detailed
simulation models are being built to gain insight into oil and gas reservoirs and to forecast reservoir performance in an accurate manner. Figure 2 shows how reservoir simulation computing resources are also increasing rapidly to meet the
growing simulation demands in Saudi Aramco over the past few years.

Figure  1  Saudi  Aramco  Growth  in  Number  of  Simulation  Jobs                                                                                                                Figure  2  Saudi  Aramco  Growth  in  Simulation  Computational  Capacity
Besides that, Saudi Aramco has developed an in-­house parallel reservoir simulator which has the capability of simulating huge Saudi Aramco reservoir models. Massively parallel scientific and engineering applications exhibit MPI
communication overhead that can be abridged to improve the applications runtime and scalability. The work presented will provide the process used in identifying communication hotspots by profiling and analyzing various simulation
models, and the procedure on how the optimization was undertaken to overcome communication bottlenecks.

2.7 3.7 13.6 19.2 32.1 35.4 55 62.7 75 85 106 120 135 150

0

100

200

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

N
um

be
r	
  o

f	
  R
un

s	
  
(T
ho

us
an

ds
)

Year

NUMBER	
  OF	
  SIMULATION	
  RUNS

5 7 9 19 50 134 204 321 346 447 447 647
1463

3400

0
1500
3000

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Tr
ill
io
n	
  
Fl
op

s

Year

SIMULATION	
  COMPUTATIONAL	
  CAPACITY

Profiling:
The optimization process began by establishing performance baseline of different simulation models with various
model sizes and runtimes. Software hotspot profiling and analysis was then performed over the selected cases
using Intel® VTune™ profiler which was used to analyze, profile and help with decisions on MPI communication
fine-­tuning. Intel MPI was the main stream in our research area.Table 1 shows the profiling and analysis results
which indicates that at least 30% of the simulator’s time is spent on MPI communication. Over the four different
cases, the trends indicate that MPI communication time can reach up to 44% with of the wall-­clock time.

Table 1: MPI communication Profiling and Analysis for Four (4) Simulation Models

Based on the above analysis, Intel® MPS profiler was used to perform further investigation and conduct in depth
profiling of the MPI communication. It was observed that MPI Barrier collective is one of the major bottlenecks as
it is the case with many other MPI applications exist in the industry. Table 2 depicts the impact of the MPI Barrier
calls on the communication;; the overhead of the calls varies from 14% to 44% of the communication time. The
data also shows that the number of MPI Barrier calls can reach to more than one billion calls (varies from one
model to another).

Table  2:    Illustration  of  MPI  Barrier  Calls  for  Four  (4)  Simulation  Models

First Optimization Technique:
Thus, the main objective is to reduce the MPI Barrier calls as much as possible without changing the simulation
results. The methodology of removing the MPI synchronization calls was by identifying unnecessary calls within
the code. Unnecessary calls are usually those calls that were added for debugging purposes. So, whenever
developers have a new portion of code that has any MPI collective, they tend to place an MPI Barrier call in place
of that collective just to test their progress within the code. If results are successful, they add the MPI collective
just after the MPI Barrier without removing the Barrier call. So, it is a development habit that exists in many
applications nowadays.

Second Optimization Technique:
After the first optimization which is related to removing MPI Barrier unnecessary calls, MPS profiler was used
again to ensure proper removal of MPI Barriers. MPS has shown almost no MPI Barrier calls in the majority of the
test cases. Therefore, another optimization technique was addressed to see if MPI communication can be further
improved by using Intel MPI collective algorithms. Intel has different number of built in algorithms for each
collective operation. So, four highly used collective operations by the reservoir simulator were tested against the
different algorithms by using Intel balance benchmark. Below figures show the best algorithm for each collective
operation with respect to the number of Bytes when tested using Intel balance benchmark. So, this benchmark
gives an indication of the best algorithm selection for each number of byte to be used in the reservoir simulator
application. All algorithms were executed for each collective operation in the same set of nodes with a total of 500
cores;; this is to ensure fair comparison between all algorithms when having exact nodes in all runs.

Figure 3 Best Algorithm Selection for Reduce Figure 4 Best Algorithm Selection for Bcast

Figure 5 Best Algorithm Selection for Allreduce Figure 6 Best Algorithm Selection for Allgather

Methods
First  Optimization  Outcomes:  
Toward an optimal optimization, unnecessary MPI Barrier calls were targeted for removal. Majority of MPI Barrier calls
were removed within several Fortran files. The percentage usage of MPI Barrier calls before optimization varies from
14.80% to 44.60%. After optimization communication overhead coming from MPI Barrier calls was reduce to almost
0% in all simulation cases. Table 3 shows detailed information of the non-­optimized case verses the optimized one.

Table  3:  Illustration  of  MPI  Barrier  Calls  in  the  Original  vs.  Optimized  Cases  

Such optimization has shown dramatic speed-­up. Figure 5 shows the speed-­up of each case after the first
optimization with respect to the wall clock time. It declares a gain of 2% to 4% speedup in the overall run time. Figure
6 illustrates the speed-­up gained with respect to the MPI time. It demonstrates a speedup of 5% to 8% in the
communication time.

Figure  7  Illustration  of  Overall  Run  Time  Speed-­up              Figure  8  Illustration  of  MPI  Time  Speed-­up  

This significant optimization has shown a clearer image of the main hotspots of MPI communication where others
have been increased in terms of time. Figure 9 shows that before optimization MPI Barrier is the main hotspot among
other communication routines. However, Figure 10 shows that MPI Barrier is no longer the major hotspot and MPI
Allreduce is the one. Besides that, these two figures illustrate that the time spent on the MPI Barrier in the original
case was distributed among other MPI routines in the optimized case. For example, MPI Allreduce has increased to
12% in the optimized case compared to the original one. So, these figures illustrates the major MPI collectives
bottlenecks after removing unnecessary MPI Barrier calls.

Figure  9  MPI  Time  Distribution  on  Original  Case                      Figure  10  MPI  Time  Distribution  on  Optimized  Case

Second  Optimization  Outcomes:  
On top of the first optimization, four highly used collective operations within the simulator application were optimized
by selecting the best algorithm for each message size. The targeted MPI collectives here are MPI Allreduce, Allgather,
Reduce, and Bcast. Figure 11 illustrates the speed-­up that was gained out of this optimization.

Figure  11  Illustration  of  Overall  Run  Time  Speed-­up

Cumulative  Optimization  Speedup:  
Based on both optimizations that were implemented here, a cumulative speed-­up was reported by making further
runs that consider both optimizations. Figure 12 illustrates the speedup that has been gained after the two levels of
optimization. This cumulative speedup has shown a gain that varies between 3% and 6%.

Figure  12:  Cumulative  Speedup  after  both  Optimizations.

Results

Case  Name No.  of  Cores Wall-­Clock  Time MPI  Time MPI  Time  (%)

CASE  1 500 3  H  28  M  25  S 1  H  8  M  18  S 32.78%

CASE  2 500 1  H  17  M  52  S 29  M  44  S 38.20%

CASE  3 490 3  H  12  M  33  S 1  H  25  M  52  S 44.59%

CASE  4 500 6  H  9  M  31  S 2  H  4  M  40  S 33.74%

Case  Name No.  of  Cores Time  (sec) Time  (%) Calls

CASE  1 500 303303.55 14.80 421,693,313

CASE  2 500 260468.63 29.19 761,836,748

CASE  3 490 1125990.74 44.60 286,070,005

CASE  4 500 1315744.11 35.18 1,514,059,234

7

2

4

3

0 2 4 6
Algorithm	
  Number

N
um

be
r	
  o

f	
  B
yt
es

BEST	
  ALGORITHM	
  FOR	
  REDUCE	
  
OUT	
  OF	
  7	
  EXISTING	
  ALGORITHMS

1

4

6

4

0 2 4 6 8
Algorithm	
  Number

N
um

be
r	
  o

f	
  B
yt
es

BEST	
  ALGORITHM	
  FOR	
  BCAST	
  OUT	
  
OF	
  8	
  EXISTING	
  ALGORITHMS

1

9

2

4

0 2 4 6 8
Algorithm	
  Number

N
um

be
r	
  o

f	
  B
yt
es

BEST	
  ALGORITHM	
  FOR	
  ALLREDUCE	
  
OUT	
  OF	
  9	
  EXISTING	
  ALGORITHMS

5

4

3

0 1 2 3 4 5
Algorithm	
  Number

N
um

be
r	
  o

f	
  B
yt
es

BEST	
  ALGORITHM	
  FOR	
  ALLGATHER	
  
OUT	
  OF	
  5	
  EXISTING	
  ALGORITHMS

Case  Name Executable No.  of  Cores Time  (sec) Time  (%) Calls

CASE  1 Original 500 303303.55 14.80 421693313
Optimized 0 0 0

CASE  2 Original 500 260468.63 29.19 761836748
0 0 0Optimized

CASE  3 Original 490 1125990.74 44.60 286070005
Optimized 0 0 0

CASE  4 Original 500 1315744.11 35.18 1514059234
Optimized 0 0 0

2

3

4 4

0

1

2

3

4

5

case	
  1 case	
  2 case	
  3 case	
  4

Sp
ee
d-­‐
up

	
  (%
)

Case	
  Name

WALLCLOCK	
  TIME	
  SPEED-­‐UP

5

8 8

6

0

2

4

6

8

10

case	
  1 case	
  2 case	
  3 case	
  4

Sp
ee
d-­‐
up

	
  (%
)

Case	
  Name

MPI	
  TIME	
  SPEED-­‐UP

35.18 32.1

14.8 12.58
2.81 0.98

0
10
20
30
40

M
PI
	
  T
im

e	
  
(%

)

MPI	
  Collective

TIME(%)	
  OF	
  MPI	
  COLLECTIVES	
  
BEFORE	
  OPTIMIZATION

47.19
36.54

9.51
3.09 1.26 0.91

0
10
20
30
40
50

M
PI
	
  T
im

e	
  
(%

)

MPI	
  Collective

TIME(%)	
  OF	
  MPI	
  COLLECTIVES	
  
AFTER	
  OPTIMIZATION

1

3

1
2

0
1
2
3
4

case	
  1 case	
  2 case	
  3 case	
  4

Sp
ee
d-­‐
up

	
  (%
)

Case	
  Name

WALLCLOCK	
  TIME	
  SPEED-­‐UP

3
6 5 6

0
2
4
6

case	
  1 case	
  2 case	
  3 case	
  4Sp
ee
d-­‐
up

	
  (%
)

Case	
  Name

CUMULATIVE	
  SPEED-­‐UP

Simulation models in the order of one billion cells pose a challenge on runtime. MPI communication
optimization is one of the main approaches to speed up the simulation runs and prepare the software for
Exascale computing. MPI Barrier reduction has shown runtime improvements without any changes in the
simulation results. That was attained by profiling the source code to identify communication bottlenecks,
quantify the communication overhead, and optimizing the MPI Barrier calls.. Another MPI communication
optimization technique was considered by evaluating various MPI collectives, Allreduce, Allgather, Reduce,
and Bcast. Such optimization has shown a considerable speedup. The cumulative speedup out of both
optimizations goes upto 6% which will definitely save a lot of reservoir simulation computing resources.

Conclusions
1. Kini,	
  S.P.,	
  Liu,	
  J.,	
  Wu,	
  J.,	
  Wyckoff,	
  P.,	
  and	
  Panda,	
  D.K.	
  (2003).	
  Fast	
  and	
  Scalable	
  Barrier	
  Using	
  RDMA	
  and	
  Multicast	
  Mechanisms	
  

for	
  Infiniband0Based	
  Clusters,	
  Proceedings	
  of	
  Euro	
  PVM/MPI	
  Conference,	
  (2003).

2. Intel®	
  https://software.intel.com/en-­‐us/articles/intel-­‐mpi-­‐library-­‐collective-­‐optimization-­‐on-­‐intel-­‐xeon-­‐phi

3. MPICH	
  https://www.mpich.org/

References


