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ABSTRACT
In the K computer, the job manager automatically collects various
metrics for workloads and stores them in databases. However, most
of the data are not fully exploited in our services due to the huge
and disorganized data set. As an early study, in order to understand
the characteristics of the workloads and extract them without train-
ing data set, we make an attempt to classify the workloads using
hierarchical clustering and k-means. Both techniques are funda-
mental multivariate analysis methods to divide the entire data set
into small groups and easily understand the behavior of the groups.
At first, we use typical HPC benchmarks to classify workloads
with the criterion, which are grouped seven clusters according to
a different set of characteristics. In addition, we classify the total
of 363,015 actual workloads by k-means with the seven clusters.
These classified workloads are further partitioned into groups and
having different characteristics as well. Based on these results, we
sort out the workloads in terms of performance. Finally, the poster
presents that one cluster having a large number of nodes shows
lower performance than the mean of all the clusters. The extracted
cluster becomes a candidate to examine in more detail about the
performance.
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1 INTRODUCTION
As part of the operations of our supercomputing center, we cur-
rently address a usage survey of our facility that includes under-
standing workload characteristics with statistical analysis and find-
ing issues from a huge number of workloads in the system. The
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survey helps not only demand analysis of the procurement process,
but also provides insights on how to improve our services.

In the K computer (hereinafter referred to as K/K-computer)
[2], the job manager collects various usage metrics (e.g., job name,
number of nodes, elapsed time, maximum memory usage size, I/O
usage, number of staging files, staging file size, and raw data of
hardware counters) for each job, which constitutes a workload. In
operation, these metrics are automatically collected and stored in
databases. A part of the metrics is directly provided to users by
the job manager. Also, some part of the metrics is summarized and
reported by administrators. However, most of the data are not fully
exploited for analysis to help inform our operations because the
amount of data stored in databases is growing every moment and
becoming huge size that is difficult to handle them.

Recently, in order to obtain more meaningful information about
workload performance from huge system logs, machine learning
or some statistical techniques are attracted [1][3]. One of the statis-
tical techniques, clustering is a fundamental multivariate analysis
technique to divide the entire data set into small groups and easily
understand behavior group by group without training data set. This
is an appropriate method for systematically classifying unlabeled
workloads in this case.

As a preliminary study, we attempt to classify typical HPC bench-
marks (e.g., DGEMM, STREAM and so on) with hierarchical clus-
tering before classifying the real workloads. These well-known
benchmarks reveal metrics behavior and correlations. We then
determine the number of clusters.

Base on the results of the preliminary study, by using k-means,
we attempt to classify the massive number of workloads executed
on K. Finally, with respect to performance (e.g., FLOPS, memory
throughput, and I/O intensive), we analyze the workload character-
istics of each group.

All the analyses were mainly performed by SciPy, scikit-learn,
and pandas in Python.

2 K-COMPUTER
2.1 Overview
K-computer is the first 10-petaflops supercomputer developed by
RIKEN and Fujitsu under the Japanese national project. The system
has 82,944 compute nodes connected by Tofu high-speed intercon-
nects. Each compute node has a SPARC-V9 based customized chip
called SPARC64VIIIfx [4] and is equipped with 16 GB memory for
each compute node. Furthermore, a 30 PB global storage and an
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11 PB local storage are installed and are transparently accessed by
compute nodes through I/O nodes.

2.2 Hardware Counters
The SPARC64VIIIfx chip has built-in hardware counters to store
the counts of events (e.g., the number of cycles, floating instruc-
tions, load/store instructions, cache misses, and bus transactions in
terms of memory and I/O read/write accesses). To precisely mea-
sure application performance with a profiler, 56-type counters are
to be unlocked to users and extremely low overhead profiling is
to be achieved compared with ordinary sampling-based profiling.
However, the number of counters in a single execution of a user
program is limited by the mechanism and the user program cannot
simultaneously use more than eight hardware counters. Besides,
users cannot change a set of hardware counters during the exe-
cution. Therefore, in this study, we use a single set of counters
throughout the duration to consistently compare the same metrics
between all targeted workloads.

2.3 Job Record Extraction From the Database
For system efficiency, K-computer employs a job manager, periph-
eral system software, and tools, which are similar to most super-
computers. The job manager controls submitted jobs as a basic unit
of workload and exclusively executes them on compute nodes. At
the same time, the job manager records the time stamp, state, and
various metrics of the workload in a database.

Also, for usability enhancement, the job manager provides vari-
ous job submitting methods (e.g., batch and interactive job types,
normal, bulk, and step job models) to users. For a preliminary study,
we extract only records of the batch job type with the normal model
from the database because this type of record is dominant and ac-
counts for more than 75% of all the node-time in the valid records
on K. Also, other types of records in the bulk and step job models
have a slightly cumbersome structure because of the parent-child
relationship. Furthermore, the interactive job spends much time
for an idle state because of waiting for the key-in command by
a user. (This “interactive” type job provides a command prompt
on a compute node. A user can interactively enter commands to
start the user’s program.) Classifying workloads based on their
performance records may make them noise information. Besides,
we ignore records with abnormal job termination because these
records have missing values. Finally, we use valid records from the
database, except for the above conditions.

3 PRELIMINARY
3.1 Job Metrics
The job manager and peripheral tools collect more than 120 metrics
for each job. Before the classification of the workloads, to easily
handle them,we eliminated the categorical metrics from the original
data set and then obtained the 24 metrics as shown in Table 1. One
of the metrics, “cycle_counts” is used for the normalization of the
hardware counters, but it is omitted from the table.

Also, the database includes particular kinds of metrics not di-
rectly related to the workload performance, for instances, regarding
the file staging, these metrics refer to the data duplicate process
between the local and global storage. This kind of the information

may become one of the diagnostic metrics for K in the future. How-
ever, as a first step, to reduce the metrics to be used, we omitted
the metrics regarding the file staging in this study.

Table 1: Job Metrics

metric name description
alloc_core_total num of cores actually allocated to compute nodes
alloc_node_num num of nodes actually allocated to compute nodes
cpu_mem_read_count_ratio cpu_ memory_read_counts per cycle_counts
cpu_mem_write_count_ratio cpu_memory_write_ counts per cycle_counts
elapsed_time elapsed time in a job
file_io_size file I/O size
floating_inst_ratio floating_inst. counts per cycle_counts
flops num of floating-point op. per elapsed time (FLOPS)
fma_inst_ratio FMA inst. counts per cycle_counts
io_transfer_size I/O transfer size
max_cycle_counts max cycle counts in all threads
max_use_mem max memory usage in a compute node
mem_th memory throughput
op_intensity arithmetic intensity (=flops/mem_th)
read_system_call num of read system call
req_core_num num of cores required by a job script
req_node_num num of nodes required by a job script
simd_floating_inst_ratio SIMD-floating inst. counts per cycle_counts
simd_fma_inst_ratio SIMD-FMA inst. counts per cycle_counts
sleep_cycle_ratio sleep_cycle_counts per cycle_counts
use_core_total num of cores actually used for a workload
use_node_num num of nodes actually used for a workload
use_nodetime product of use_node_num and elapsed_time
write_system_call num of write system call

In this study, we use the one-year data set collected from Oct. 1,
2016 to Sep. 30, 2017. The number of workloads is 363,015.

3.2 Preprocessing
Most of the metrics are integer-type variables. However, part of the
metrics (e.g., cycle_counts and sleep_cycle) easily become a large
number represented by a 128-bit integer. Also, their counts depend
on the duration of a workload. To equally compare metrics with
other workloads in view of three types of workloads: arithmetic,
memory access, and I/O intensive workload not depending on the
number of nodes, we normalized the eight hardware counters by
using “cycle_counts.”

In addition, a classification process sufficiently works with lower
accuracy than the accuracy of the actual measurement. Therefore,
we treated all the metrics as a 32-bit floating-point number.

Also, the metrics have substantially left-skewed distribution. To
be spread between records more uniformly, we apply the logarith-
mic transformation defined byw = ln (v ), where v = u + 1(u ≥ 0)
and u is an actual measurement value of a metric. Then, we ap-
ply standardization to the log-transformed value given bywstd =
(w −wmean ) /wsd , wherewmean is the mean value andwsd is the
standard deviation forw .

Finally, after the rescaling process, we obtained the preprocessed
data set.

4 CLUSTERING FOR BENCHMARKS
To understand the characteristics of metrics, we classify the typical
HPC benchmarks (e.g., DGEMM, STREAM, IOR, Intel MPI Bench-
marks, and NasParallel Benchmarks) before classifying the real
workloads on K.

Figure 1 is the result of using a hierarchical clustering method
with Euclidean distance andWard variance minimization algorithm
as a linkage method. In this figure, standardized metric values are
shown. The standardization processes were applied to each column.
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Figure 1: A classification of the benchmarks by hierarchical clustering. The columns mean the metrics. The rows mean the
benchmarks. A heat map with dendrograms uses the standardized values for each metrics. “dgemm” is matrix-matrix multi-
plication. “stream” is memory bandwidth measurement benchmark. “ior” is file I/O intensive benchmark. “imb” is Intel MPI
Benchmarks. “npb_omp_*” are NasParallel Benchmarks, OpenMP threaded version. “npb_mpi_*” are NasParallel Benchmarks,
MPI version.

The white color represents the mean value in a column. The red
and blue colors describe the values higher and lower than the mean
values, respectively. Also, on the top and left sides of the heat map,
dendrograms are shown.

To determine a minimum number of clusters, we used a crite-
rion that divides intensive workload (“dgemm” and “stream”) into
different groups. Based on the criterion, we obtained seven clusters
from the hierarchical clustering.

As shown on the heat map, “dgemm” obviously has the largest
“flops” value in all the benchmarks. “Stream”, “npb_omp_lu”, and “sp”
reflect thememory throughput behavior. Also, “ior” and “npb_omp_dc”
have high metric values regarding I/O. Furthermore, a group of
“npb-omp” and “npb-mpi” have divided two large groups based on
the number of nodes. We found that the behavior of workloads
reflecs most of the metrics.

We show a dendrogram of the metric clustering shown on the
top side of the heat map. While “flops” and “simd_fma_inst_ratio”
have similar behavior, “floating_inst_ratio” and “fma_inst_ratio”
are not directly tied in “flops.” We think that these instructions have
the tendency to be exclusively issued in the same workloads. Also,
in the metric range from “use_core_total” to “use_node_num,” we
found extremely similar behaviors. In other words, we can select
one of the metrics for feature selection.

5 CLUSTERING FOR REAL WORKLOADS
We classified all the targeted workloads on K, using k-means with
seven clusters based on the result of the previous chapter. We used
this classification instead of hierarchical clustering because it is

difficult to apply them because of the complexity O (N 2), where N
is the number of workloads.

To depict the classification result by k-means, we used scatter-
plot on the principal component analysis (PCA) subspace as shown
in Figure 2 (a). Each color represents a cluster group classified by
k-means. Figure 2 (b) shows the centroids for each cluster. Figure
2 (c) shows the number of workloads in each classified group. A
well-known feature of the k-means method is that it makes approx-
imately same size groups. Actually, we can see that each cluster
has a tendency to equally partition into seven groups. However, we
intuitively think that the cluster size is not equal; therefore we will
attempt to use other methods in our future work.

Figure 2 (d) shows a heat map using standardization by each
cluster. In cluster-1, all the metric values are lower than the mean.
Also, these workloads used a small number of nodes in less time.
In other words, the workloads are ignorable.

In cluster-2, while these workloads used a small number of nodes
as well, the workloads have higher values in the several metrics in-
cluding “mem_th.” However, in Figure 2 (e), “stream” was classified
into cluster-2 even though it does not have the highest “mem_th”
value in all the clusters. We think that the number of nodes in
benchmarks used smaller than the real workloads. In other words,
the number of nodes strongly affects the classification.

Cluster-3 is similar to cluster-2 in several metrics but used a
larger number of nodes.

Cluster-4 used a smaller number of nodes than the mean but has
arithmetic intensive characteristics remarkably. DGEMMbelongs to
this cluster. Also, the values of “use_nodetime” and “elapsed_time”
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(a) (b)
(c)

(d) (e)

suite name short name cluster#

DGEMM dgemm 4

STREAM

stream_copy 2

stream_add 2

stream_scale 2

stream_triadd 2

IOR ior 2, 7

IMB imb 7

NPB-OMP

npb_omp_bt 2

npb_omp_cg 1

npb_omp_dc 2

npb_omp_ep 1

npb_omp_ft 1

npb_omp_is 1

npb_omp_lu 2

npb_omp_mg 1

npb_omp_sp 2

npb_omp_ua 1

NPB-MPI

npb_mpi_bt 3

npb_mpi_cg 7

npb_mpi_dt 7

npb_mpi_ep 3

npb_mpi_ft 7

npb_mpi_is 7

npb_mpi_lu 3

npb_mpi_mg 7

npb_mpi_sp 7

Figure 2: A classification of the real workloads on K by k-means with #cluster=7. (a) Scatterplot of workloads (horizontal and
vertical axes are the 1st and 2nd component of the PCA subspace, respectively.) (b) Centroids plotted on the PCA subspace. (c)
The number of workloads for each cluster. (d) A heat map of the standardized values in the metrics vs. cluster#. (e) Belonging
to the cluster number for the benchmarks used in the previous chapter.

are not small. These workloads of the cluster have an interesting
characteristic.

Cluster-5 has I/O intensive characteristic with a larger number
of nodes. Also, this cluster has the highest “max_use_mem” and
high “flops” in all the clusters. We are impressed that the cluster
exploits more compute resources than others.

Cluster-6 is also I/O intensive workload with a large number of
nodes but has lower “flops” and “mem_th” values than the mean.
We think that the cluster is a kind of data processing workloads.

Cluster-7 has values similar to cluster-6 except for “use_nodetime”
and I/O metrics. Also, IOR unexpectedly belongs to this cluster. We
think the same reason for “dgemm” in cluster-2 causes this result.
We expect that actual workloads’ I/O usage on K is greater than
the benchmarks’ I/O.

Finally, in terms of workloads’ performance, we think that the
characteristics of cluster-6 need to be examined in more detail
because these workloads of the cluster used a node-time larger
than the mean and have lower values in terms of arithmetic and
memory access. In addition, the number of workloads in the cluster
cannot be ignored; they are approximately 50,000. We think that
the struggle to understand actual usage and check the performance
of the workloads can help improve our operations and services.

6 FUTUREWORKS
Based on our study, we expect that a classification of the workload
will help our screening process for detecting undeveloped applica-
tions. Our study will also provide insights to improve our system
and operations. We will attempt to classify the workloads using
other methods and metrics and introduce the results on the poster.
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