
CCA/EBT: Code Comprehension Assistance Tool for
Evidence-Based Performance Tuning

Masatomo Hashimoto∗
Software Technology and Artificial Intelligence Research

Laboratory
Chiba Institute of Technology

Narashino, Chiba, Japan
m.hashimoto@stair.center

Masaaki Terai
Operations and Computer Technologies Division

RIKEN Advanced Institute for Computational Science
Kobe, Hyogo, Japan
teraim@riken.jp

Toshiyuki Maeda
Software Technology and Artificial Intelligence Research

Laboratory
Chiba Institute of Technology

Narashino, Chiba, Japan
tosh@stair.center

Kazuo Minami
Operations and Computer Technologies Division

RIKEN Advanced Institute for Computational Science
Kobe, Hyogo, Japan
minami_kaz@riken.jp

ABSTRACT
Application performance tuning is still quite an art, despite ad-
vances in auto-tuning systems. Evidence-based performance tun-
ing (EBT) aims at helping performance engineers gain and share
evidence of performance improvement to make better decisions.
As a step toward the goal, we have developed a tool, CCA/EBT,
which assists performance engineers in comprehending source code
written in Fortran, especially to identify loop kernels. The tool an-
alyzes syntactic/semantic structures of source code and then pro-
vides outline views of the nested loops and the call trees, deco-
rated with source code metrics. With the tool, 175 963 loops from a
thousand computation-intensive applications have been explored.
Based on the manual classification results of a randomly sampled
subset of the loops, we have constructed an additional module for
predicting loop kernels, which achieved cross-validated classifica-
tion accuracy of 81%.

ACM Reference Format:
Masatomo Hashimoto, Masaaki Terai, Toshiyuki Maeda, and Kazuo Mi-
nami. 2018. CCA/EBT: Code Comprehension Assistance Tool for Evidence-
Based Performance Tuning. In Proceedings of High Performance Computing
in Asia-Pacific Region (HPC Asia 2018). ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
To improve the performance of a scientific application, we have to
identify its computational kernels, each of which is typically com-
posed of one or more loops. Then various empirical attempts are

∗Also with RIKEN Advanced Institute for Computational Science.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s).
HPC Asia 2018, January 2018, Tokyo Japan
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

made to achieve a high percentage of the theoretical peak perfor-
mance of a given computing system. In general, application perfor-
mance tuning is still a demanding task relying on experience and
intuition, although a number of studies on auto-tuning systems
are conducted for specific computational kernels such as stencil
code, linear algebra solvers, and matrix multiplications [1], or even
full applications [9]. Evidence-based performance tuning (EBT) [5]
aims at helping engineers gain and share evidence of performance
improvement to make better decisions. More specifically, our long-
term goal is to construct a database of facts, or factbase, extracted
from performance tuning histories of computational kernels such
that we can search the database for promising optimization pat-
terns that fit a given computational kernel.

In general, however, it is difficult to obtain detailed histories of
performance tuning of computational kernels, since they would be
thrown away as soon as the processes are finished. One approach
is to extract such histories from repository hosting services such
as GitHub1. As a step toward the goal, we have developed a tool,
CCA/EBT, which assists performance engineers in comprehend-
ing source code written in Fortran, especially to classify loops into
kernels and non-kernels.

The rest of the paper is organized as follows. Section 2 explains
loop classification for identifying kernels. Then an overview of the
tool is given in Section 3. After related work is reviewed in Sec-
tion 4, Section 5 concludes the work.

2 CLASSIFICATION OF LOOPS
To improve the performance of a scientific application, comuta-
tional kernel, or kernel for short, are extracted from it first. Kernels
can be further classified into several classes, each of which is re-
lated to expected efficiency, or a percentage of the theoretical peak
performance (floating-point operations per second), and a typical
tuning strategy [6]. We focus on the identification of a kernel com-
posed of one or several nested loops, or a loop kernel. Kernels are
identified based on static features extracted from the loops in the
source code and/or based on dynamic features extracted from the

1https://github.com/



HPC Asia 2018, January 2018, Tokyo Japan M. Hashimoto et al.

Table 1: Syntactic features of a loop

Abbrev. Feature
FOp Number of floating-point operations
St Number of statements
Br Number of branches
AR Number of array references
DAR Number of direct array references
IAR Number of indirect array references
B/F Bytes per flop
MLL Maximum loop nest level

Figure 1: Overview of CCA/EBT

runtime performance data. Table 1 shows an example of a set of
loop features we consult to determine whether a loop is a kernel
or not.

A computation that a piece of kernel code describes can be char-
acterized primarily by the amount of bytes of memory (RAM) ac-
cesses relative to floating-point operations, B/F for short, essen-
tially required by the computation regardless of individual imple-
mentations.2 Actual B/F of a specific code region is usually mea-
sured dynamically by profiling or tracing.While syntactically count-
ing floating-point operations is relatively straightforward, estimat-
ing the volume of memory traffic is far from easy, as it would
require cache behavior prediction. Instead of employing complex
cache models, we employ the following estimation schemes [6].

ES0 assumes that data is shared in cache only among syntac-
tically identical array references.

ES1 assumes that the data referenced by the array references
that differ only by the first dimension are located in the
same cache block.

ES2 assumes that the data referenced by the array references
that differ only by the first dimension and/or additions or
subtractions of constants at the second dimension are lo-
cated in the same cache block.

For example, we assume by ES2 that a(i1,j,k) and a(i2,j+1,k)
are located in the same cache block.

3 OVERVIEW OF CCA/EBT
Figure 1 gives an overview of the tool.

3.1 Fortran Parser
Extracting features of loops from source code requires its abstract
syntax tree (AST) obtained by parsing. We employ a dedicated For-
tran parser developed by Hashimoto and others [5]. The parser is
2Instead of B/F, we can use multiplicative inverse of B/F, or operational intensity, used
in the roofline model [10] as long as it is used consistently.

based on language standards such as FORTRAN77, Fortran90, For-
tran95, Fortran2003, and Fortran2008. It is also capable of handling
the following.

Dialects The parser is capable of parsing dialects and lan-
guage extensions made locally by compiler vendors such as
IBM, PGI, and Intel.

Directives It can directly parse directives/constructs of the
C preprocessor, OpenMP3, OpenACC4, OCL (Fujitsu), XLF
(IBM), and DIR/DEC (Intel).

Partial failure It provides keep-on-parsing mode by making
use of Menhir5, a LR(1) parser generator, with error recov-
ery function enabled to build the core of the parser.

Incomplete program fragments It is capable of parsing in-
complete program fragments such as sequences of state-
ments, which are typically included in other source files.

By virtue of the unusual features explained above, we can parse
application programs without hooking the build process of the
applications, which means that we can parse source files in any
order without taking care of the dependencies among them. In-
stead, some dependencies caused by INCLUDE lines, #include di-
rectives, and USE statements may hinder the parser from deter-
mining types of some syntactic entities. As a result, AST nodes
such as array elements, substrings, function references, or struc-
ture constructors may be left ambiguous. We disambiguate them
later by resolving dangling references with the help of a database
that contains information extracted from the whole source code.

3.2 Factbase
As mentioned above in Section 3.1, our parser requires deferred
resolution of dangling references and/or ambiguous symbols.More-
over, a loop classification task requires call trees to obtain maxi-
mum loop nest level (MLL) seen in Section 2. We make use of a
factbase, that is, a database for storing facts extracted from mul-
tiple source files. Reference/symbol resolution and feature extrac-
tion are performed by querying the factbase.

As the factbase queries may contain AST patterns and/or call
graph patterns, it should be natural to use tree/graph databases
rather than conventional relational databases. We employ an RDF
(ResourceDescription Framework)6 store,Virtuoso7. Instead of rigid
database schemas, RDF stores require more flexible vocabularies,
or ontologies. An ontology defines hierarchies of concepts such
as “a do-stmt is a statement” and allows us to describe database
queries concisely.

3.3 Fact Analyzer
By querying a factbase, the fact analyzer resolves dangling refer-
ences and ambiguous symbols, constructs call trees, and extracts
loop metrics. Queries are written in SPARQL8, which is a standard
query language for RDF stores. Roughly speaking, SPARQL is an
extension of SQL with graph patterns that contain query variables.
Formore details on the queries, we refer the reader to the paper [6].
3http://openmp.org/
4http://openacc.org/
5http://cristal.inria.fr/~fpottier/menhir/
6http://www.w3.org/RDF/
7http://virtuoso.openlinksw.com/
8http://www.w3.org/TR/sparql11-query/



Code Comprehension Assistance Tool for Evidence-Based Performance Tuning HPC Asia 2018, January 2018, Tokyo Japan

Figure 2: Project view

With the fact analyzer, Hashimoto and others analyzed 175 963
loops from a thousand computation-intensive applications hosted
on GitHub [6]. From the set of loops, 100 were randomly sampled
and then manually classified by experienced performance engi-
neers with the aid of CCA/EBT. Based on the classification results,
we have constructed an additional module for predicting loop ker-
nels.We employed C-SVC (C-Support Vector Classification) in LIB-
SVM [3] from a datamining library called scikit-learn9 to construct
the predictive model by using the classification results as training
data. The model achieved 20-fold cross-validated classification ac-
curacy of 81% [6].

3.4 Topic Analyzer
To help performance engineers understand an application, we also
analyze comments and variable names occurring in the source code
for examining the topic or research field of the application.We con-
structed a topic model with latent semantic indexing (LSI) [4] based
on 168 papers of scientific applications from several research fields
such as quantum chemistry, astrophysics, and climate science.

3.5 Viewer
The viewer, implemented as a web application, provides three dif-
ferent views: project summary view, tree view and source code
view. A snapshot of a project summary view is given in Figure 2,
where automatically generated links to the documentswhose names
contain “README” are shown. The result of topic analysis is shown
as a ranking of candidate applications, such as qcd and alps, sim-
ilar to the project. You will see a link to the tree view as well as the
progress of a user’s loop classification performed in the tree view.

In a tree view, we can explore ASTs and call trees decorated with
loop metrics. It is also possible to store users’ loop classification re-
sults in a database behind the viewer. Figure 3 shows a snapshot of
a tree view, where a predicted loop kernel decoratedwith extracted
static features such as estimated B/F is highlighted over the outline
of the AST and the call tree of an entire application. It should be
noted that the size of a call tree may be infinite when it contains
recursive calls. In the tree view, a procedure or function appears
only at the deepest level of non-recursive calls. It should be noted

9http://scikit-learn.org/

also that we can select an estimation scheme for features AR, DAR,
IAR, and B/F, where the suffixes 0, 1, and 2 of them indicate the es-
timation schemes ES0, ES1, and ES2, respectively.

Figure 4 gives a source code view that appears when a tree node
is double-clicked, where array references are highlighted and quick
look of the definitions appear on mouseover.

4 RELATEDWORK
There are several commercial and open-source Fortran analysis
tools: FORCHECK [2], Photran [7], and CamFort [8] to name a
few. However, to the best of the authors’ knowledge, there is no
tool that is capable of predicting loop kernel nor of parsing a thou-
sand of applications in a fully automated way.

5 CONCLUSION
As a step toward the long-term goal of helping performance en-
gineers gain and share evidence of performance improvement, we
have developed a tool, CCA/EBT10, which assists performance en-
gineers in comprehending source code written in Fortran, espe-
cially to classify loops into kernels and non-kernels. The tool an-
alyzes syntactic/semantic structures of source code and then pro-
vides outline views of the nested loops and the call trees, decorated
with source code metrics.

By using the tool, 175 963 loops from a thousand computation-
intensive applications have been explored . Based on the manual
classification results of a randomly sampled subset of the loops, we
have constructed an additional module for predicting loop kernels.
The kernel prediction module have not been extensively evaluated
on the loops other than the sampled ones yet. They might have to
be evaluated based on whether they can detect actual bottlenecks
in an application, even though they were made relying only on
manual classification results without measuring the runtime per-
formance. Nevertheless, once a large number of kernels are pre-
dicted, we would be able to trace the change histories of them in
an automated way [5], and hence to construct a database of per-
formance tuning examples for the long-term goal.

10https://github.com/ebt-hpc/cca



HPC Asia 2018, January 2018, Tokyo Japan M. Hashimoto et al.

Figure 3: Tree view

Figure 4: Source code view

ACKNOWLEDGMENTS
This work was supported in part by JSPS KAKENHI Grant Number
JP26540031.

REFERENCES
[1] Protonu Basu, Mary Hall, Malik Khan, Suchit Maindola, Saurav Muralidharan,

Shreyas Ramalingam, Axel Rivera, Manu Shantharam, and Anand Venkat. 2013.
Towards Making Autotuning Mainstream. International Journal of High Perfor-
mance Computing Applications 27, 4 (2013), 379–393.

[2] Forcheck b.v. [n. d.]. FORCHECK. ([n. d.]). http://www.forcheck.nl/.
[3] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: A Library for Support

Vector Machines. ACM Trans. Intell. Syst. Technol. 2, 3 (2011), 27:1–27:27.
[4] Scott Deerwester, Susan T. Dumais, GeorgeW. Furnas, Thomas K. Landauer, and

Richard Harshman. 1990. Indexing by latent semantic analysis. Journal of the
American Society for Information Science 41, 6 (1990), 391–407.

[5] Masatomo Hashimoto, Masaaki Terai, Toshiyuki Maeda, and Kazuo Minami.
2015. Extracting Facts from Performance Tuning History of Scientific Appli-
cations for Predicting Effective Optimization Patterns. In Proceedings of the 12th
IEEE/ACM Working Conference on Mining Software Repositories (MSR). 13–23.

[6] Masatomo Hashimoto, Masaaki Terai, Toshiyuki Maeda, and Kazuo Minami.
2017. An Empirical Study of Computation-Intensive Loops for Identifying and
Classifying Loop Kernels. In Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering (ICPE). 361–372.

[7] Ralph Johnson, Jeff Overbey, and Greg Watson. [n. d.]. Photran -An Inte-
grated Development Environment and Refactoring Tool for Fortran. ([n. d.]).
http://www.eclipse.org/photran/.

[8] Dominic Orchard and Andrew Rice. 2013. Upgrading Fortran Source Code Using
Automatic Refactoring. In Proceedings of the 2013 ACMWorkshop on Refactoring
Tools (WRT). 29–32.

[9] Ananta Tiwari, Jeffrey K Hollingsworth, Chun Chen, Mary Hall, Chunhua Liao,
Daniel J Quinlan, and Jacqueline Chame. 2011. Auto-tuning Full Applications:
A Case Study. Int. J. High Perform. Comput. Appl. 25, 3 (2011), 286–294.

[10] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An
Insightful Visual Performance Model for Multicore Architectures. Commun.
ACM 52, 4 (2009), 65–76.


