
Application	performance	tuning is	still	quite	an	art,	despite	advances	in	auto-tuning	systems	
[1][9].	

EBT (evidence-based	performance	tuning) [5]	aims	at	helping	performance	engineers	gain	and	
share	evidence	of	performance	improvement	to	make	better	decisions.	

Long-term	goal is	to	construct	a	database	of	facts,	or	factbase,	extracted	from	performance	
tuning	histories	of	computational	kernels such	that	we	can	search	the	database	for	promising	
optimization	patterns	that	fit	a	given	computational	kernel.	

INTRODUCTION

TECHNICAL	HIGHLIGHTS

VIEWERS

REFERENCES

1. Basu et	al.	J.	High	Perform.	Comput.	Appl. 2013,	27,	4.
2. Forcheck b.v.	http://www.forcheck.nl/.
3. Chang	&	Lin.	Trans.	Intell.	Syst.	Technol. 2011,	2,	3.
4. Deerwester et	al.	J.	American	Society	for	Info.	Sci. 1990,	41,	6.
5. Hashimoto	et	al.	Proc.	Conf.	on	Mining	Software	Repositories.	2015.
6. Hashimoto	et	al.	Proc.	Conf.	Performance	Engineering.	2017.
7. Johnson	et	al.	http://www.eclipse.org/photran/.
8. Orchard	&	Rice.	Proc.	Workshop	on	Refactoring	Tools.	2013.
9. Tiwari	et	al.	J.	High	Perform.	Comput.	Appl. 2011,	25,	3.
10.Williams	et	al.	Commun.	ACM,	2009,	52,	4.

ACKNOWLEDGMENTS
This	work	was	supported	in	part	by	JSPS	KAKENHI	Grant	Number	JP26540031.

Loop	Kernel	Prediction	based	on	Machine	Learning

1) Features	were	extracted	from	175,963	loops	from	1000
computation-intensive	applications	hosted	on	GitHub	[6].	
2) 100	were	randomly	sampled	and	then	manually
classified	by	experienced	performance	engineers.
3) By	using	the	classification	results	as	training	data	and
C-SVC	in	LIB-SVM	[3]	from	scikit-learn,	we	constructed	a
predictive	model.
4) The	model	achieved	20-fold	cross-validated
classification	accuracy	of	81%	[6].	

Dedicated	Fortran	Parser

Specifications:	FORTRAN77,	Fortran90,	Fortran95,	Fortran2003,	Fortran2008
Dialects:	IBM,	PGI,	Intel
Directives:	Cpp,	OpenMP,	OpenACC,	OCL(Fujitsu),	XLF(IBM),	DIR/DEC(Intel)

Schemes	for	Statically	Estimating	Volume	of	Memory	Traffic

ES0	Data	is	shared	in	cache	only	among	syntactically	identical	array	references.	
ES1 The	data	referenced	by	the	array	references	that	differ	only	by	the	first	dimension	are	
located	in	the	same	cache	block.	(ex.	a(i, n) and	a(j, n))
ES2 The	data	referenced	by	the	array	references	that	differ	only	by	the	first	dimension	and	by	
additions/subtractions	of	constants	at	the	second	dimension	are	located	in	the	same	cache	block.	
(ex.	a(i, n) and	a(j, n + 1))

Topic	Analysis	for	Source	Code

•	Helping	performance	engineers	understand	an	application
▪Analyzing	comments	and	variable	names	occurring	in	the	source	code
⁃Examining	the	topic	or	research	field	of	the	application.	

•	Constructing	a	topic	model	with	latent	semantic	indexing (LSI)	[4]
▪Based	on	168	papers	of	scientific	applications	from	several	research	fields
⁃Quantum	chemistry,	astrophysics,	climate	science,	...	

†Software	Technology	and	AI	Research	Lab,	Chiba	Institute	of	Technology
*RIKEN	Advanced	Institute	for	Computational	Science

M.	Hashimoto†*,	M.	Terai*,	T.	Maeda†,	and	K.	Minami*

CCA/EBT:	Code	Comprehension	Assistance	Tool	
for	Evidence-Based	Performance	Tuning

Abbrv. Feature
FOp #	floating-point	operations
St #	statements
Br #	branches
AR #	array	references
DAR #	direct	array	references
IAR #	indirect	array	references
B/F Bytes per	flop
MLL Maximum loop	nest	level

A source	code	view	(appears	by	double-
clicking	a	tree	node)	has	the	following:
•	Highlighted	array	references,
•	Quick	look	of	the	definitions
(appear	on	mouse-over),

•	The	definition	of	an	array	reference
(by	double-clicking).

The	tool	is	available	at
https://github.com/ebt-hpc/cca

A	project	summary	view	provides	the	following:
•	Automatically	generated	links	to	the	documents	whose	names	contain	“README”,
•	The	result	of	topic	analysis	as	a	ranking	of	candidate	applications	(qcd,	alps,	...),
•	A	link	to	the	tree	view,	and
•	Progress	of	a	user’s	loop	classification	performed	in	the	tree	view.	

A	tree	view	shows	the	following:
•	Outline	of	the	AST	and	the	call	tree	of	an	entire	application,
•	Predicted	loop	kernels	decorated	with	extracted	static	features	(estimated	B/F,	...),	and
•	Estimation	scheme	selector	for	features	AR,	DAR,	IAR,	and	B/F
(suffixes	0,	1,	and	2	of	them	indicate	the	estimation	schemes	ES0,	ES1,	and	ES2,	respectively).

The	size	of	a	call	tree	may	be	infinite	when	it	contains	recursive	calls.	
A procedure	or	a	function	appear	only	at	the	deepest	level	of	non-recursive	calls.

OBJECTIVES

RELATED	WORK
Commercial	and	open-source	Fortran	analysis	tools	include	the	following:	
• FORCHECK	[2]	--- A	Fortran	source	code	analyzer	and	programming	aid,
• Photran [7]	--- An	IDE	and	refactoring	tool	for	Fortran,	and
• CamFort [8]	--- Light-weight	verification	and	transformation	tools	for	Fortran.
CCA/EBT	is	capable	of	predicting	loop	kernels	and	of	parsing	1000	applications	in	a	fully	
automated	way.

Tab.	1:	Syntactic	features	of	a	loop

Fig.	4:	Source	code	view

Fig.	3:	Tree	view

Fig.	2:	Project	view

Fig.	1:	Overview	of	CCA/EBT

•	Locating	computational	kernels
▪Predicting	location	of	computational	kernels
▪Assisting	in	the	manual	inspection	of	source	code

•	Identifying	optimization	patterns	applied	to	computational	kernels
•	Constructing	database	of	positive/negative	examples	of	optimization	patterns

⚠�


