CCA/EBT: Code Comprehension Assistance Tool
for Evidence-Based Performance Tuning

el

L Lab

INTRODUCTION

Application performance tuning is still quite an art, despite advances in auto-tuning systems

[1][9].

EBT (evidence-based performance tuning) [5] aims at helping performance engineers gain and
share evidence of performance improvement to make better decisions.

Long-term goal is to construct a database of facts, or factbase, extracted from performance
tuning histories of computational kernels such that we can search the database for promising
optimization patterns that fit a given computational kernel.

OBIJECTIVES

e Locating computational kernels
" Predicting location of computational kernels

= Assisting in the manual inspection of source code

TECHNICAL HIGHLIGHTS

Fact | Fact |

e — .

Source Call Tree |
Code J Metrics |

‘ File Systenﬁ" Topic Analyzer

Fig. 1: Overview of CCA/EBT

Kernel

PredictedJ

Ranking |

Loop Kernel Prediction based on Machine Learning

Tab. 1: Syntactic features of a loop

1) Features were extracted from 175,963 loops from 1000 mm

computation-intensive applications hosted on GitHub [6]. T P e e
2) 100 were randomly sampled and then manually P &P P

classified by experienced performance engineers. St # statements

3) By using the classification results as training data and Br # branches
C-SVC in LIB-SVM [3] from scikit-learn, we constructed a AR # array references
predictive model. DAR # direct array references

4) The model achieved 20-fold cross-validated

classification accuracy of 81% [6]. IAR # indirect array references

B/F Bytes per flop

MLL Maximum loop nest level
Dedicated Fortran Parser

Specifications: FORTRAN77, Fortran90, Fortran95, Fortran2003, Fortran2008
Dialects: IBM, PGI, Intel
Directives: Cpp, OpenMP, OpenACC, OCL(Fujitsu), XLF(IBM), DIR/DEC(Intel)

Schemes for Statically Estimating Volume of Memory Traffic

ESO Data is shared in cache only among syntactically identical array references.

ES1 The data referenced by the array references that differ only by the first dimension are
located in the same cache block. (ex. a(i, n)anda(j, n))

ES2 The data referenced by the array references that differ only by the first dimension and by
additions/subtractions of constants at the second dimension are located in the same cache block.
(ex.a(i, n)anda(j, n + 1))

Topic Analysis for Source Code

e Helping performance engineers understand an application
* Analyzing comments and variable names occurring in the source code

-Examining the topic or research field of the application.
e Constructing a topic model with latent semantic indexing (LSI) [4]
* Based on 168 papers of scientific applications from several research fields

-Quantum chemistry, astrophysics, climate science, ...

RELATED WORK

Commercial and open-source Fortran analysis tools include the following:

e FORCHECK [2] --- A Fortran source code analyzer and programming aid,
 Photran [7] --- An IDE and refactoring tool for Fortran, and

e CamfFort [8] --- Light-weight verification and transformation tools for Fortran.

CCA/EBT is capable of predicting loop kernels and of parsing 1000 applications in a fully
automated way.

7
CIT "'Software Technology and Al Research Lab, Chiba Institute of Technology p. OB BKEN

CTAIR M. Hashimoto™, M. Terai’, T. Maeda®, and K. Minami’

:) : . . Advanced Institute for
m CHIBA INSTITUTE OF TECHNOLOGY RIKEN Adva nCEd |nSt|tUte fOI" COmpUtathnal SC|ence RIKEN Alcs Computational Science

VIEWERS
< - ine/cgi-bin/list
Fortran Tree View Llnks to 10197 Llnk to -qcd[20171019T104703](src/ces_ged_sol.. Prog Fess Of +
Project(s) README-like tree view |OO|3
UID: anonymous documents classification
Overall Progress: 7 / 0.00%N 7 /
Project / / Description Topic \\ Version Progress/ Last Judged
0 cos-qed | 4 e : P sz osieant 20171019T104703 0.00%(0/24) ;
: %%_gggir Pr.EdICted qed : 0.482175
+ srima_proyeeay LOPICS OF the | 158+ 000
application

Fig. 2: Project view

A project summary view provides the following:

e Automatically generated links to the documents whose names contain “README”,
e The result of topic analysis as a ranking of candidate applications (qgcd, alps, ...),

e A link to the tree view, and

e Progress of a user’s loop classification performed in the tree view.

: @ call initset[ccs_qgcd_solver_bench:ccs_qcd_solver_bench.F90:49-49]
----- E] #ifndef _singlePU[ccs_qgcd_solver_bench:ccs_qcd_solver_bench.F90:59-60] L t
----- E] if (nodeid==0) then[ccs_qcd_solver_bench:ccs_qcd_solver_bench.F90:63-77] O 0 p y p e

----- [] #ifndef _singlePU[ccs_qcd_solver_bench:ccs_qed_solver_bench.F90:78-81] C I ass |f| Ca tl on
‘ ----- E call init_u_and_y(ue_t_,uo_t_,ye_t_,yo_t_)[ccs_qcd_solver_bench:ccs_qcd_solver_bench.F90:104-104]

o menu

.) subroutine init_u_and_y(ue_t_,uo_t_,ye_t_,yo_t_)[init_u_and_y:init_u_and_y.h90:1-70]
j I$OMP PARALLEL DO PRIVATE(mu,ix,iy,iz,ieoxyz,itb,ic,jc)[init_u_and_y:init_u_and_y.h90:19-49]
J [E call init_p(pe,po)[init_u_and_y:init_u_and_y.h90:54-54]
.) subroutine init_p(pe,po)[init_p:init_p.h90:1-209]
[Q] do icad = 1,COLADI[init_p:init_p.h90:34-40]
-] [@ do mu=1,NDIM[init_p:init_p.h90:72-97]
‘ ----- I$OMP PARALLEL DO PRIVATE(mu,ix,iy,iz,ieoxyz,itb,ictb,ic,jc,ixx,iyy,izz,yr,th,He)[init_p:init_p.h90:98-164]
do mu=1,NDIM[init_p:init_p.h90:99-137]F0p:96,5t:18,Br:0, ES2 EARZ:15,DAR2:15,IAR2:0,B/F:1.25 I | v Loop Type
| [@ do ix=1,NX[init_p:init_p.h90:100-136] ot @ Keme
. [Q] do iy=1,NY[init_p:init_p.h90:101-135]

M2: Low B/F & for Cache Blocking
M3: Low B/F & Simple Loop Body

[Q] do = i :108-113] M4: Low B/F & Complex Loop Body
i - C . M5: High B/F & Direct Array Ref.
. ‘ ; Q) do ESt| m at| on +90:114-119] M6: Hi:h BJF & Indier(e:.'ct A?ryayf?ef.
Predicted loop | * 5-118)
kernel 1 @ do scheme .h90:120-133] e
. selector 132]
_______ _ 122-131]

© ® €] localhost:18000/outline/cgi-bin/tree?user=anonymous&proj=ccs-qcd&ver=20171 ¢ O @).
Fortran Tree View | ccs-qed[20171019T104703] Sources | ccs-qcd[20171019T104703](src/ccs_ged_solver_b... ‘ SourceCodeViewer ‘ —+
ccs-qcd
20171019T104703 [Jump to Target | Search:
4 . src/ccs_qed_solver_bench.F90 (764 nodes)
i ﬁ program ccs_qcd_solver_bench[ccs_qcd_solver_bench:ccs_qcd_solver_bench.F90:4-284]

M1: Low B/F & DGEMM \

Fig. 3: Tree view

A tree view shows the following:

e Outline of the AST and the call tree of an entire application,

e Predicted loop kernels decorated with extracted static features (estimated B/F, ...), and
e Estimation scheme selector for features AR, DAR, IAR, and B/F

(suffixes 0, 1, and 2 of them indicate the estimation schemes ESO, ES1, and ES2, respectively).

A The size of a call tree may be infinite when it contains recursive calls.
A procedure or a function appear only at the deepest level of non-recursive calls.

. | NN) Gl localhost:18000/outline/cgi-binfopen. (4] i))
A SOurce COde VIew (appears by dOUble- Fortran Tree View ccs-qcd[20171019T10... l ccs-qcd[20171019T1... ‘ SourceCodeViewer -
clicking a tree node) has the following: Source Code View
PY H|gh||ghted array references lsrc/init_p.h90 99L,0C from 20171019T104703
’ 99 do mu=1,NDIM
. . “, e 100 do ix=1,NX
e Quick look of the definitions 32 i1y
102 o iz=1,NZ
(appear on mouse-over), 104 | dmmm ix o+)
.. 105 :Lyy i %y + :!.ps::.te(Z)*NY
e The definition of an array reference S —
. . 108 do ictb=1,COLADJ*NTH . R
(by double-clicking). M | O e ERA R
111 8 yr(ictb) = dsqrt(-2.0d0xdlocidulatiuelioth daa fum ixx,m))))
ii ! end;l;(lctl.)) = | QU'Ck |00k Of ixx,mu)*pi2))
™ e the array
L e e e
117 [el i definition

118 enddo
119 enddo
120 do itb=1l-ieoxyz,NTH-ieoxyz

121 do jc = 1,COL
122 do ic = 1,COL
123 pe(ic,jc,itb,iz,iy,ix,mu)=§e(l,itb)*SU(ic,jc,l)
124 & +Bﬁ(2,itb)*SU(ic,jc,2) &
125 & +q real(8) :: He(COLADJ,0:NTH),Ho(COLADJ,0:NTH) [17]
126 & +He(4,itb)*SU(ic,jc,4) &
127 & +He(5,itb)*SU(ic, jc,5) &
. . 128 & +He(6,itb)*SU(ic,jc,6) &
The tool is available at 129 & +He(7,1tb) *S0(ic, Je,7) &
130 & +He(8,itb)*SU(ic, jc,8)
. . 131 enddo
https://github.com/ebt-hpc/cca 12 enddo

133 enddo
134 enddo

Close

Fig. 4: Source code view

REFERENCES

Basu et al. J. High Perform. Comput. Appl. 2013, 27, 4.

Forcheck b.v. http://www.forcheck.nl/.

Chang & Lin. Trans. Intell. Syst. Technol. 2011, 2, 3.

Deerwester et al. J. American Society for Info. Sci. 1990, 41, 6.
Hashimoto et al. Proc. Conf. on Mining Software Repositories. 2015.
Hashimoto et al. Proc. Conf. Performance Engineering. 2017.
Johnson et al. http://www.eclipse.org/photran/.

Orchard & Rice. Proc. Workshop on Refactoring Tools. 2013.

. Tiwari et al. J. High Perform. Comput. Appl. 2011, 25, 3.

10. Williams et al. Commun. ACM, 2009, 52, 4.

© 0 NOUAWN R

ACKNOWLEDGMENTS

This work was supported in part by JSPS KAKENHI Grant Number JP26540031.

