
Accelerating Convolutional Neural Networks
Using Low Precision Arithmetic

Hiroki Naganuma
Department of Computer Science,
Tokyo Institute of Technology
hiroki11x@rio.gsic.titech.ac.jp

Rio Yokota
Global Scienti�c Information and Computing Center,

Tokyo Institute of Technology
rioyokota@gsic.titech.ac.jp

ABSTRACT
�e recent trend in convolutional neural networks (CNN)[2] is
to have deeper multilayered structures. While this improves the
accuracy of the model, the amount of computation and the amount
of data involved in learning and inference increases. In order to
solve this problem, several techniques have been proposed to reduce
the amount of data and the amount of computation by lowering the
numerical precision of computation and data by utilizing the CNN’s
resistance to noise. However, there is a lack of discussion on the
relationship between parameter compression and speedup within
each layer of the CNN. In this research, we propose a method to
speed up the inference by using half precision �oating point SIMD
instructions, by applying low precision to the learned model, in
addition to reducing the data of the CNN model, and speeding up
data access for layers that are computation-bound. We examined
the in�uence of CNN recognition accuracy, the speedup for each
layer, and its reason, when we apply our method.

KEYWORDS
image recognition, convolutional neural network, low precision
arithmetic, half-precision, quantization

1 CNNWITH LOW PRECISION ARITHMETIC
1.1 �oat16 computation / data type
It is possible to reduce the amount of data of the CNN model by
applying half-precision arithmetic / half-precision data type to
the learned network model (in this case AlexNet[1]). Using half-
precision data types enables faster data transfer rate by packing
more variables into a given number of Bytes. In the present work,
we take this one step further and accelerate not only the load/store
of data, but also the arithmetic itself by utilizing half precision
�oating point SIMD instructions. �is is especially e�ective for
compute-bound layers such as the convolution layers. As a refer-
ence, we compare with the case where we use reduced precision
for the data type only, and the case where we use it for both the
computation and data type. When we use fp16 for only the data
type we call this Dfp16, and when we used it for the math as well
we call it Mfp16. Similarly, we call the fp32 counterparts Dfp32
and Mfp32. Simply using the data type fp16 reduces the memory
footprint by half, and allows larger batch sizes or larger models
without the need for Out of Core algorithms. In our case, we focus
on reducing the time for inference by speeding up not only the data

HPCAsia2018, Tokyo, Japan
2017. N/A. . . $N/A
DOI: N/A

access, but also the computation by using half-precision �oating
point SIMD instruction for the compute-bound convolution layers.

1.2 int8 quantization
In the method to be veri�ed this time, the operation in the layer is
performed by �oat 32, and the data type is set to int8 for the data
propagating in each layer. In this research, we verify a method of
mapping parameters to the range of -128, 127 based on the maxi-
mum of absolute value of parameters for each layer with respect
to the quantization of 32 bit �oating point as shown in Fig1. �is
method is called absmax. We also veri�ed a method called minmax
that quantizes the maximum and minimum value as a threshold.

Figure 1: 8 bit quantization absmax method

2 EXPERIMENTS
In this research, we apply half-precision arithmetic to the learned
model of AlexNetwhich is a simple CNNmodel, whichwon ILSVRC[3]
in 2012. We investigated the degradation of recognition accuracy,
the tendency of speed-up for each layer, and its cause. We also
investigated several 8-bit quantization algorithms and their e�ect.
�e execution environment is as shown in the table1.

Table 1: Execution environment

Environment 1 Environment 2
OS CentOS 7.3 Ubunts 16.04
GPU Tesla P100-SXM2 NVIDIA GTX1080TI
Num of CUDA Core 3584 3584
Memory Band Width 732 GB/s 484 GB/s
Memory 16 GB 11 GB

2.1 Speed comparison of matrix
multiply-accumulate

In the CNN inference and learning calculation, the product-sum
calculation of the matrix occupies most of its operation time. With
respect to the product-sum operation of the matrix, experiments
were conducted for the case of each data type of int8, �oat16, and

HPCAsia2018, January 2018, Tokyo, Japan Hiroki Naganuma and Rio Yokota

Figure 2: Improved speed by half-precision computation/data type application and in�uence on recognition accuracy of
AlexNet

�oat32 using NVIDIA GTX1080TI and NVIDIA Pascal100 SXM2,
respectively. In the current experiments, the matrix size is assumed
to be m = n = k. cuBLAS[6] which is a dense matrix library also
used for CNN operation was used in each product-sum operation.
For int8, we used cuBLAS’s GemmEx, for �oat16 we used cuBLAS’s
Hgemm, and for �oat32 we used cuBLAS’s Sgemm. As shown in
the table 2, it became clear that as the matrix size increases that if
the result of �oat32 is taken as the baseline, �oat16 has twice its
throughput and int8 has nearly four times its throughput.

Table 2: Comparison of elapsed time of multiply-add opera-
tion of matrix in each data type of int8, �oat16, �oat32

Matrix ElapsedTime(P100 SXM2) ElapsedTime(GTX 1080TI)
Size fp32 (sec) fp16 (sec) fp32 (sec) int8 (sec)
256 5.53472e-05 6.92736e-05 3.00928e-05 2.37152e-05
1024 0.000379542 0.000318128 0.00024637 9.79936e-05
4096 0.0145966 0.00921268 0.0130537 0.00337301
16384 0.880288 0.462562 0.859033 0.217507

2.2 In�uence of low-precision data type on
CNN recognition performance

In this experiment, learned AlexNet is used as the model of CNN,
by implementing it on chainer-v4. �e operation in each layer is
performed with �oat32, but the data type is set to the low-precision
when propagating the data between the layers. Among the di�erent
methods for converting the data type to low precision, the method
described in Section 1.2 showed the best recognition performance.
As a result of the veri�cation, it became clear that this method
does not greatly deteriorate the recognition accuracy of CNN as
shown in table3. In addition, veri�cation was also carried out for
VGG16 which is o�en used for transfer learning. As a result, the
recognition performance of CNN degrades with 8-bit quantization
using minmax, but not for absmax. �e reason for achieving higher
recognition performance when 8-bit quantization is used compared
to when the data type is �oat32 is used, is most likely due to the
e�ect of noise regularization[7] by application of low precision.

Table 3: In�uence of low-precision data type CNN on recog-
nition performance

�oat32 �oat16 minmax int8 absmax int8
AlexNet top1-accuracy 51.025% 51.024% 50.116% 50.945%
VGG16 top1-accuracy 70.888% 70.885% 70.876% 70.902%

2.3 Impact and speedup of half-precision
computation / data type application on
CNN

We investigated the speedup of CNN’s inference time when chang-
ing data type and computation type on NVIDIA Tesla P100 SXM2.
We target AlexNet, which has a simple structure is simple and we
used NVIDIA-Ca�e which provides improved GPU implementation
of the open-source deep learning framework Ca�e. As shown in the
Section1.1, when only the data type is set to �oat16 (Dfp16 Mfp32),
the speed is not improved because the calculation is performed by
�oat32. In the case where computation is done in �oat16(Dfp16
Mfp16) using SIMD instruction, speed of the convolution layer ob-
served. �is is because the convolution layer is compute-bound.
�e results of the experiment is shown in Fig. 2 and table4.

Table 4: Inference time and recognition accuracy by adapt-
ing half-precision computation / data type, batchsize = 512

Computation
Precision

Inference
Time

GPU
UseRate

Memory
Usage

top-1
acc

top-5
acc

fp32 66.785ms 99% 12845MiB 0.56828 0.79950
Dfp16Mfp32 60.065ms 99% 7475MiB 0.56813 0.79962
Dfp16Mfp16 51.005ms 99% 7475MiB 0.56821 0.79944

In the case of Dfp16 Mfp32, the memory usage has been reduced
to 0.58%. �e Fc7 layer, which is memory-bounded, achieves a
1.789x speedup. In the case of Dfp16 Mfp16, despite a decrease in
Top1-accuracy of 0.007%, the data is reduced as much as the Dfp16
Mfp32 case, while speed up for the compute-bound convolution

Accelerating Convolutional Neural Networks
Using Low Precision Arithmetic HPCAsia2018, January 2018, Tokyo, Japan

layer is achieved, especially in the conv1 layer, the speed up reaches
1.548x.

3 CONCLUSIONS AND FUTUREWORK
We propose a method to speed up the inference by using half pre-
cision �oating point SIMD instructions. We found that no signi�-
cant deterioration of AlexNet’s recognition accuracy was observed,
when half-precision computation is applied to the learned model
and when the data type of int8 is applied. In addition, even when
only data type is half-precision, it shows that the maximum speed of
1.789x can be a�ained in all the coupling layers and the like which
are rate-limiting for memory access. By applying half-precision
computation, it was shown that the maximum speed of 1.548x can
be a�ained by the convolution layer, which is the computation-
bound.

On the other hand, in order tomake the technique of this research
even faster, at this time we veri�ed the implementation of int8
only for the data type and not the computation. Regarding the
quantization, besides the methods veri�ed this time, it is necessary
to compare the method with �xed-point[5] etc., and to investigate
not only the recognition accuracy but also the execution speed. It
is necessary to consider a technique using 8-bit SIMD instruction
for speeding up the computation as well. Additionally, we will try
to speed up by adapting the 8-bit SIMD instruction to a method
that e�ectively uses the weight of the compression model that uses
8-bit quantization such as Deep Compression[4] in the future.

Acknowledgments. �e authors would like to thank A. Sekiya for
technical assistance with the experiments. �is work was supported
by JST CREST Grant Number JPMJCR1687, Japan.

REFERENCES
[1] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet Classi�cation with Deep

Convolutional Neural Networks”, Advances in Neural Information Processing Sys-
tems 25, pp. 1106–1114, 2012.

[2] Y. LeCun, L. Bo�ou, Y. Bengio, and P. Ha�ner., “Gradient-based learning applied
to document recognition.”, Proc. of the IEEE, pp. 2278��-2324, 1998.

[3] O. Russakovsky,J. Deng,H. Su,et al. , “ImageNet Large Scale Visual Recognition
Challenge”, International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252,
2015.

[4] S. Han,H. Mao,W. Dally, “Deep Compression: Compressing Deep Neural Net-
works with Pruning, Trained�antization and Hu�man Coding ”, International
Conference on Learning Representation, pp. 74–76, 2016.

[5] S. Gupta,A. Agrawal,K. Gopalakrishnan,P. Narayanan , “Deep Learning with
Limited Numerical Precision.”, International Conference on Machine Learning,
2015.

[6] NVIDIA, CUBLAS. h�ps://developer.nvidia.com/cublas.
[7] Y. Luo, F. Yang, “Deep Learning With Noise”, h�p://www.andrew.cmu.edu/user/

fanyang1/deep-learning-with-noise.pdf , 2014.

http://www.andrew.cmu.edu/user/fanyang1/deep-learning-with-noise.pdf
http://www.andrew.cmu.edu/user/fanyang1/deep-learning-with-noise.pdf

	Abstract
	1 CNN with Low Precision Arithmetic
	1.1 float16 computation / data type
	1.2 int8 quantization

	2 Experiments
	2.1 Speed comparison of matrix multiply-accumulate
	2.2 Influence of low-precision data type on CNN recognition performance
	2.3 Impact and speedup of half-precision computation / data type application on CNN

	3 Conclusions and Future Work
	References

