
Optimizing Hardware-Based Privacy-Preserving MapReduce

Han-Yee Kim, Rohyoung Myung, Sangwoo Park,
Sukyong Choi, Heonchang Yu, Taeweon Suh

Department of Computer Science and Engineering,
Korea University

145 Anam-ro, Seongbuk-gu, Seoul, Korea
{hanyeemy, mry1811, psw0113, csukyong, yuhc,

suhtw}@korea.ac.kr

Jungha Lee
Disaster Information Service Lab

Korea Institute of Science and Technology Information
(KISTI)

245 Daehak-ro, Yuseong-gu, Daejeon, Korea
jungha07@kisti.re.kr

1 ABSTRACT
For big data processing, it is reasonable to offload complicated jobs
to cloud for efficiency. However, due to the security attacks from
rogues, there is a risk of sensitive information leakage [on cloud
system side. Especially, if the data set includes privacy sensitive
information, users may hesitate to utilize the cloud services due to
the security concerns. In this paper, we introduce a hardware-based
privacy preserving MapReduce framework[1] and enhance it with
two key techniques: Separate barrier and module combining
scheme. Both schemes not only enhance the system performance
by efficient data flow control but optimize the hardware resource
utilization to fit in the capacity of hardware as well. The
implementation of system is executed on Zynq-7000
programmable SoC device[2] from Xilinx. The combining scheme
boasts of at least a 2.20x faster performance in the experiment.

2 PROPOSED SYSTEM AND TECHNIQUES

2.1 Proposed Hardware-Based Privacy-reserving
MapReduce System

Figure 1: Overview of Secure Hardware MapReduce System

As shown in Fig .1, the proposed system is composed of an x86
server machine as a master node, and programmable SoCs as slaves.

In our scenario, with CAD tools provided by FPGA vendor, user
can automatically create hardware mappers and reducers with AES
crypto modules via High Level Synthesis (HLS) tool[3]. They are
integrated to a single bitstream file and the file is re-encrypted with
AES key. User also should encrypt his data with AES. After that,
the AES key is further re-encrypted with RSA[4] public key of
FPGA. Then, all the encrypted data, encrypted hardware design,
and re-encrypted AES key are transferred to the cloud. In the
system, the root of trust is the re-encrypted AES key which will be
decrypted inside FPGA by its private key. Because system
configuration as well as data processing is done as enclaved format
in tamper-resistant FPGA, the proposed system is secure from
rogue users even they get the root authority of system.

2.2 Optimizing Schemes on the Hardware-based
Privacy-Preserving MapReduce

The separate barrier and combining scheme are shwon in Fig .2.

(a) Separate Barrier Scheme (b) Combining Scheme
Figure 2: Proposed techniques on Secure MapReduce
Framework

- Separate barrier: It eases the bottleneck of global barrier
between mapper and reducer by localizing them. The separate
barrier is implemented with a simple counter in the head of
each reducer, where the counter is initially set to the number
of inputs. If data set from a mapper comes in, the counter is
decreased by one. When all the inputs of reducer are available,
the counter reaches 0 and reducer starts the task processing.
After finishing reducer job, separate barrier counter will be re-
initialized to the number of inputs.

- Module combining is conditional scheme. If there is no
complicated shuffling between mappers and reducers so that
they can be serialized by certain input data chunk, the mappers
and reducers can be combined and configured on a single
FPGA board with separate barrier.

3 IMPLEMENTATION AND EXPERIMENT
RESULT

3.1 Target Applications and its Parameters
In the experiment, we use two target applications (K-means and
DNA sequencing) for implementation. K-means clustering is one
of the most commonly used algorithms in big data processing.
Given a set of n data where each data corresponds to a point in a d-
dimensional space, its goal is to cluster closest data points,
aggregating data set into k-groups. DNA sequencing is an
application where users’ DNAs are compared against reference
DNAs. After data processing, the application scores the difference
between them. DNA sequence is divided into a certain size of
blocks. In the mapper phase, each block is further divided by certain
string size by enumerating all possible consecutive subsequences.
The parameters of the target applications are shown in Table 1.

Table 1: Parameters in Target Applications
Applications Parameters

K-means # Centroid
(16, 32, 48)

Dimension
(4, 6, 8)

DNA sequencing Block size
(16, 32, 48)

String size
(6, 8 , 10)

3.2 Optimizing Method of FPGA via HLS
We implemented our proposed schemes using Zynq-7000 [2]
(xc7z020clg484-1) programmable SoC device. Zynq-7000 has two
interacting parts: processing system (dual Cortex-A9s) and
Programmable Logic (PL). The target applications are originally
written in C. To convert the C code to hardware, we use a CAD tool
called Vivado High Level Synthesis (HLS) from Xilinx. The
hmac[5] and RSA[4] decryption module are also originally written
in C and converted to Verilog via Vivado HLS in the same way.
Note that HLS cannot convert dynamic functions to hardware like
malloc(). In addition, some libraries are also not supported.
Therefore, our target applications are partially tuned to adjust the
hardware conversion mechanism on Zynq-7000.
For the performance tuning, we insert some directives in the
original C code. The PIPELINE directive allows efficient data
processing by increasing hardware utilization. The
ARRAY_PARTITION and RESOURCE directives allow the Cortex-
A9 to access IP data as memory mapped registers. The input of
RSA decryption module, the input of AES decryption module, and
the output of AES encryption module are configured with those
directives for access from Cortex-A9.
In the experiment, to maximize the throughput of mapper and
reducer, AES crypto modules are configured as many as possible
in each programmable SoC. However, zynq has limited resources.
If the implemented hardware module exceeds the capacity of it, the

module cannot be configured as maximum throughput. Algorithms
for handling this situation is shown in Algorithm 1 (for separate
barrier) and Algorithm 2 (for combining scheme).

ALGORITHM 1. Integrated MapReduce Module
Configuration Algorithm for Separate Barrier Scheme

D = # bits of AES decrypt module
E = # bits of AES encrypt module
i = 1;
j = 1;
݀௜= ܦہ/ሺ128 ∗݅ሻۂ;

௝݁= ܧہ/ሺ128 ;ۂ݆∗
repeat
if (݀௜*cost(AES decrypt) > ௝݁*cost(AES encrypt))

i = i+1;
else

j = j+1;
until (݀௜*cost(AES decrypt) + cost(mapper or reducer) +

௝݁*cost(AES encrypt) < capacity)

configure SoC;

ALGORITHM 2. Integrated Combining Module
Configuration Algorithm

M = # of mappers to one reducer
D = # bits of AES decrypt module
E = # bits of AES encrypt module

௠ܶ	= # of cycle for mapper

ௗܶ = # of cycle of AES decrypt module

௘ܶ = # of cycle of AES encrypt module
i = 1;
j = 1;
݀௜= ܦہ/ሺ128 ∗݅ሻۂ;

௝݁= ܧہ/ሺ128 ;ۂ݆∗
݉௜= ۂ݅/ܯہ;

repeat
if (݀௜ *cost(AES decrypt) + ݉௜ *cost(mapper) +
cost(reducer) + ௝݁ାଵ*cost(AES encrypt) < capacity)

j = j+1;
else if (݀௜ାଵ*cost(AES decrypt) + ݉௜ାଵ*cost(mapper) +

cost(reducer) + ௝݁*cost(AES encrypt) < capacity)
i = i+1;

else
if (ሼሺ݀௜െ݀௜ାଵሻ ∗ decryptሻ	ሺAESݐݏ݋ܿ 	൅ 	ሺ݉௜ െ ݉௜ାଵሻ ∗

costሺmapperሻሽ	/	ሺT୫ ൅ Tୢ ሻ
< ሺ݁௝െ ௝݁ାଵሻ ∗ Tୣ		/	encryptሻ	ሺAESݐݏ݋ܿ)

j = j+1;
else

i = i+1;
until (݀௜ *cost(AES decrypt) + ݉௜ *cost(mapper) +

cost(reducer) + ௝݁*cost(AES encrypt) < capacity)

configure SoC;

3.3 Evaluation and Analysis
The integrated module configurations applying Algorithm 1 and
Algorithm 2 are shown in Table 2 and Table 3, respectively.

Table 2: Integrated Module Configuration Applying Algorithm 1

Applications Modules Parameters
FPGA
Configuration

K-means

Mapper
4 Dimension Fully Configured
6 Dimension Fully Configured
8 Dimension Fully Configured

Reducer
16 Centroid Fully Configured
32 Centroid AES Decrypt 1/2
48 Centroid AES Decrypt 1/2

DNA
sequencing

Mapper

16 Block, 6 String Fully Configured
16 Block, 8 String Fully Configured
16 Block, 10 String Fully Configured
32 Block, 6 String AES Encrypt 1/2
32 Block, 8 String AES Encrypt 1/2
32 Block, 10 String AES Encrypt 1/2
48 Block, 6 String AES Encrypt 1/2
48 Block, 8 String AES Encrypt 1/2
48 Block, 10 String AES Encrypt 1/2

Reducer

16 Block, 6 String AES Decrypt 1/2
16 Block, 8 String Fully Configured
16 Block, 10 String Fully Configured
32 Block, 6 String AES Decrypt 1/3
32 Block, 8 String AES Decrypt 1/3
32 Block, 10 String AES Decrypt 1/3
48 Block, 6 String AES Decrypt 1/4
48 Block, 8 String AES Decrypt 1/5
48 Block, 10 String AES Decrypt 1/5

Table 3: Integrated Module Configuration Applying Algorithm 2
Applications Parameters FPGA Configuration

K-means

4 Dimension, 16 Centroid AES Decrypt, Map 1/3
4 Dimension, 32 Centroid AES Decrypt, Map 1/5
4 Dimension, 48 Centroid AES Decrypt, Map 1/7
6 Dimension, 16 Centroid AES Decrypt, Map 1/3
6 Dimension, 32 Centroid AES Decrypt, Map 1/6
6 Dimension, 48 Centroid AES Decrypt, Map 1/9
8 Dimension, 16 Centroid AES Decrypt, Map 1/4
8 Dimension, 32 Centroid AES Decrypt, Map 1/8
8 Dimension, 48 Centroid AES Decrypt, Map 1/12

DNA
sequencing

16 Block size, 6 Sub Fully Configured
16 Block size, 8 Sub Fully Configured
16 Block size, 10 Sub Fully Configured
32 Block size, 6 Sub Fully Configured
32 Block size, 8 Sub Fully Configured
32 Block size, 10 Sub Fully Configured
48 Block size, 6 Sub Fully Configured
48 Block size, 8 Sub Fully Configured
48 Block size, 10 Sub Fully Configured

Fig .3 shows the hardware resource utilization of integrated mapper
and reducer modules when applying Algorithm 1. In most cases, it
is insufficient BRAM resources that cause a modification of the
initial configuration. As the AES module occupies the majority of
BRAM resources, it is split by Algorithm 1. The execution time of
integrated mapper and reducer module for separate barrier scheme
is shown in Fig .4 and it implies that hmac is the critical path of

both target applications in all the cases of mapper. Because
reducers do not contain hmac module, all the reducers are relatively
faster than the corresponding mapper.
Fig .5 shows the hardware cost of integrated combined module with
the configurations of Algorithm 2. Fig .6 shows the execution time
of integrated combined module when applying combining scheme.
Even not considering the network traffic between programmable
SoC and Cortex-A9, the combining scheme shows quite
remarkable speedup. Especially in DNA Sequencing, as assuming
the number of utilizing boards is same, the highest speedup
(293.08x) is achieved with the case of 16 Block size and 10 String
size in DNA Sequencing whereas the lowest speedup (2.20x) is
achieved with the case of 8 dimension and 48 centroids in K-means.
The elimination of AES crypto module makes more MapReduce
modules can be accommodated and the elimination of hmac
module reduces the processing time of mappers dramatically.

Figure 3: Hardware resource utilization of integrated modules
applying separate barrier

Figure 4: Execution time of integrated modules applying
separate barrier

Figure 5: Hardware resource utilization of integrated modules
applying combining scheme

Figure 6: Execution time of integrated modules applying
combining scheme

4 RELATED WORK
There have been efforts of accelerating MapReduce in two ways:
the first takes advantage of off-the-shelf fixed parallel computing
resources such as GPU, Xeon Phi, and many-core processors[6-10]
and the second one utilizing reconfigurable hardware[11-13]. In the
reconfigurable camp, Mershad et al[11] proposed a new service
model where users can choose to pay a premium for faster data
processing by exploiting FPGAs. Lin et al[12] proposed an eight
Zynq-based Hadoop cluster, referred to as ZCluster. Shan et al[13]
implemented a MapReduce framework on FPGA, referred to
FPMR. In FPMR, the whole process of the mapper and reducer is
conducted on the FPGA side, and the mapper and reducer are
scheduled by hardware queue. There are a few studies on reducing
the synchronization overhead of MapReduce by eliminating the
global barrier[14, 15]. Elteir et al [14] proposed a hierarchical
reduction, where the map and reduce processing is overlapped at
the inter-task level and the reduce task gets started as soon as a
certain number of map tasks complete. The partial outputs from
reducers are aggregated following a tree hierarchy. Verma et al [15]
classified reduce operations according to applications’
characteristics, and eliminated the global barrier in Hadoop by
using tree based scheme.

ACKNOWLEGEMENT
This work was supported by the National Research Foundation of
Korea(NRF) grant funded by the Korea government(MSIP) (No.
2017M3C4A7081956).

REFERENCES
[1] Dean J, Ghemawat S. MapReduce: simplified data processing on large

clusters. Communications of the ACM. 2008;51(1):107-13.
[2] Crockett LH, Elliot RA, Enderwitz MA, Stewart RW. The Zynq Book:

Embedded Processing with the Arm Cortex-A9 on the Xilinx Zynq-7000 All
Programmable Soc: Strathclyde Academic Media; 2014.

[3] Feist T. Vivado design suite. White Paper. 2012;5.
[4] Rivest RL, Shamir A, Adleman L. A method for obtaining digital signatures

and public-key cryptosystems. Communications of the ACM.
[5] Krawczyk H, Canetti R, Bellare M. HMAC: Keyed-hashing for message

authentication. 1997.
[6] Chen SY, Lai CF, Hwang RH, Chao HC, Huang YM, editors. A multimedia

parallel processing approach on GPU MapReduce framework. Ubi-Media
Computing and Workshops (UMEDIA), 2014 7th International Conference
on; 2014: IEEE.

[7] Fang W, He B, Luo Q, Govindaraju NK. Mars: Accelerating mapreduce with
graphics processors. IEEE Transactions on Parallel and Distributed Systems.
2011;22(4):608-20.

[8] Lu M, Zhang L, Huynh HP, Ong Z, Liang Y, He B, et al., editors. Optimizing
the mapreduce framework on intel xeon phi coprocessor. Big Data, 2013
IEEE International Conference on; 2013: IEEE.

[9] Teodoro G, Kurc T, Kong J, Cooper L, Saltz J, editors. Comparative
performance analysis of Intel (R) Xeon Phi (TM), GPU, and CPU: a case
study from microscopy image analysis. Parallel and Distributed Processing
Symposium, 2014 IEEE 28th International; 2014: IEEE.

[10] Honjo T, Oikawa K, editors. Hardware acceleration of hadoop mapreduce.
Big Data, 2013 IEEE International Conference on; 2013: IEEE.

[11] Mershad K, Kaitoua AR, Artail H, Saghir MA, Hajj H, editors. A framework
for multi-cloud cooperation with hardware reconfiguration support. Services
(SERVICES), 203 IEEE Ninth World Congress on; 2013: IEEE.

[12] Lin Z, Chow P, editors. Zcluster: A zynq-based hadoop cluster. Field-
Programmable Technology (FPT), 2013 International Conference on; 2013:
IEEE.

[13] Shan Y, Wang B, Yan J, Wang Y, Xu N, Yang H, editors. FPMR:
MapReduce framework on FPGA. Proceedings of the 18th annual
ACM/SIGDA international symposium on Field programmable gate arrays;
2010: ACM.

[14] Elteir M, Lin H, Feng W-c, editors. Enhancing mapreduce via asynchronous
data processing. Parallel and Distributed Systems (ICPADS), 2010 IEEE
16th International Conference on; 2010: IEEE.

[15] Verma A, Cho B, Zea N, Gupta I, Campbell RH. Breaking the MapReduce
stage barrier. Cluster computing. 2013;16(1):191-206.

