Performance Evaluation of NICAM-DC-MINI using XcalableACC
on Accelerated Cluster

Masahiro Nakao
RIKEN Advanced Institute
for Computational Science

Hyogo, Japan
masahiro.nakao@riken.jp

Taisuke Boku
Center for Computational Sciences
University of Tsukuba
Ibaraki, Japan

ABSTRACT

Cluster systems equipped with accelerators, commonly known as

“accelerated clusters”, have entered widespread use in various fields.

In order to develop applications in accelerated clusters, program-
mers often use a combination of CUDA and MP], or a combination
of OpenACC and MPI (OpenACC + MPI). However, these combi-
nations face programming complexity issues due to their inclusion
of MPI functions. This paper introduces the XcalableACC (XACC)
language, which is a combination of OpenACC and XcalableMP
(XMP). XMP is a Partitioned Global Address Space (PGAS) lan-
guage for distributed memory systems, and XMP enables program-
mers to develop applications more easily than MPL To evaluate
the performance and productivity of XACC, we implemented the
NICAM-DC-MINI application using XACC. The results show that
while the performance of XACC was slightly inferior to that of
OpenACC+MPI, the implementation of XACC has a much better
outlook.

CCS CONCEPTS

« Computer systems organization — Embedded systems; Re-
dundancy; Robotics; » Networks — Network reliability;

KEYWORDS
ACM proceedings, KIEX, text tagging

ACM Reference Format:

Masahiro Nakao, Hitoshi Murai, Akihiro Tabuchi, Taisuke Boku, and Mit-
suhisa Sato. 2018. Performance Evaluation of NICAM-DC-MINI using Xcal-
ableACC on Accelerated Cluster. In Proceedings of HPC Asia. ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 BACKGROUND

Cluster systems equipped with accelerators, commonly known as
“accelerated clusters”, are widely used in various fields. To develop

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s).

HPC Asia, Jan 2018, Tokyo, Japan

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxxX-XXXX-X/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Hitoshi Murai
RIKEN Advanced Institute
for Computational Science

Hyogo, Japan

Akihiro Tabuchi
Graduate School of Systems and
Information Engineering
University of Tsukuba
Ibaraki, Japan

Mitsuhisa Sato
RIKEN Advanced Institute
for Computational Science

Hyogo, Japan

applications in accelerated clusters, a combination of CUDA and
MPI is often used due to their ability to exploit the system per-
formance. In addition, a combination of OpenACC and MPI (Ope-
nACC+MPI) has emerged [13] because OpenACC can be used to
develop applications using accelerators at reduced programming
costs and has higher code portability than CUDA. However, even
with these combinations, the low productivity of MPI cannot be
overcome.

Partitioned Global Address Space (PGAS) languages, which of-
fer higher productivity than MPI, have been proposed for distributed
memory systems. Thus, a combination of OpenACC and a PGAS
language is proving to be useful in accelerated clusters. Examples
of PGAS languages include XcalableMP (XMP) [7, 12], Coarray
Fortran (CAF) [17], PC]J [16], Unified Parallel C (UPC) [1], UPC++
[18], HabaneroUPC++ [10], X10 [4], Chapel [3], and DASH [5].

Previously, we designed the XcalableACC (XACC) [6, 11] lan-
guage as an XMP extension that uses OpenACC for accelerated
clusters. XMP is a PGAS language that provides two paralleliza-
tion features. One is a typical parallelization using directives, the
other is a flexible parallelization using coarray features. Since pro-
grammers can use both XMP features and OpenACC directives in
XACC, they can develop applications on accelerated clusters with
ease. XACC consists of extensions of C and Fortran, and the For-
tran version of XACC is backward compatible with Fortran 2008.

In this paper, we report on the development of the NICAM-DC-
MINT application [14] using the Fortran version of XACC, along
with our evaluation of the performance and productivity of XACC
on our accelerated cluster. NICAM-DC-MINI, which is a subset of
the NICAM-DC application[15], contains the minimum computa-
tional procedures to run a baroclinic wave test case[9].

2 OMNI COMPILER

Omni compiler is a reference implementation for an XACC lan-
guage that has been developed as an open-source project by the
University of Tsukuba and the RIKEN on GitHub!.

Figure 1 shows that the compile process used in Omni compiler.
First, the compiler translates an original file that has been prepared
by a programmer into an intermediate file. The XMP and XACC
directives in the original file, along with their coarray features, are

https://github.com/omni-compiler



HPC Asia, Jan 2018, Tokyo, Japan

Translated by
Omni Compiler

M. Nakao et al.

Compiled by

O

Original File

Base Language +
Coarray feature + XMP/XACC directive +
OpenACC directive

Modified Base Language +
Coarray/XMP/XACC runtime call +
OpenACC directive

}O OpenACC Compiler >() Linked >.

Intermediate File

Object File Execution File

| Runtime Library |

Figure 1: Compile process in Omni compiler

Table 1: Evaluation environment

CPU Intel Xeon-E5 2680v2 2.8 GHz x 2 Sockets
Memory | DDR3 1866MHz 59.7GB/s 128GB
GPU NVIDIA Tesla K20X (GDDR5 250GB/s 6GB) x 4
Network | InfiniBand FDR 7GB/s
Software Omni compiler 1.2.1, PGI compiler 17.3,

CUDA 8.0.44, MVAPICH2 2.2

translated into runtime calls in the intermediate file. If necessary,
the code except for the original file XMP and XACC directives, as
well as their coarray features, are also modified. At this point, the
intermediate file still has general OpenACC directives. Next, an
OpenACC compiler compiles the intermediate file and creates an
execution file with a link to the Omni compiler’s runtime library.
This allows Omni compiler to use any OpenACC compiler as a
backend compiler.

3 IMPLEMENTATION OF NICAM-DC-MINI

We implemented NICAM-DC-MINI using coarray features and Ope-
nACC directives in XACC based on the OpenACC+MPI version
of NICAM-DC-MINI. To accomplish a coarray-based implemen-
tation, the MPI functions in the based code must be replaced with
their corresponding coarray notations. We changed the code using
the following rules[8] basically.

e MPI_Send/Isend — coarray assignment.

e MPI_Recv/Irecv — (be deleted).

e MPI collective communication — intrinsic subroutine (e.g.

co_broadcast).

e MPI_Wait and MPI_Barrier — sync all statement.

Figure 2 shows a code modification portion performed using
XACC. Note that an additional sync all statement is required be-
fore coarray operation in line 1 of Fig. 2b in order to ensure that
the array recvbufon all images can be used.

4 EVALUATION

We evaluated the NICAM-DC-MINI using XACC on HA-PACS/TCA
system, the specification of which is shown in Table 1. We used a
PGI compiler as a backend compiler for OpenACC directives. The
performance of the original NICAM-DC-MINI using OpenACC+MPI
was also evaluated for comparison. In this experiment, an image is
mapped to an MPI process at the Omni compiler’s runtime library,
and an MPI process is assigned to a single CPU core.

We executed both NICAM-DC-MINI applications in the target
data “gl06rl01z80pe10” and “gl06rl01z80pe20” during 100 steps with

1 do ro=1,romax(halo)

2 call mpi_irecv(recvbuf(1,ro), &

3 rsize(ro,halo)«cmax, &

4 mpi_double_precision, &

5 sourcerank(ro,halo), &

6 recvtag(ro,halo), &

7 ADM_comm_run_world, &
8

areq(ro), &
9 ierr)
10 enddo
11

12 do so=1,somax(halo)
13 call mpi_isend(sendbuf(1,s0), &

14 ssize(so,halo)+cmax, &

15 mpi_double_precision, &
16 destrank(so,halo), &

17 sendtag(so,halo), &

18 ADM_comm_run_world, &
19 areq(so+romax(halo)), &

20 ierr)

21 enddo

22

23 call mpi_waitall(acount,areq,stat,ierr)

(a) Based code

sync all
do so=1,somax(halo)
3 recvbuf(1:ssize(so,halo)cmax, dstimg(so)[destrank(so,halo)+1] =
sendbuf(1:ssize(so,halo)xcmax,so)
end do
5 syncall

DN =

(b) New code

Figure 2: A code modification portion performed using
XACC

strong scaling. The “gl06rl01z80pe10” is executed in 10 MPI pro-
cesses, and the “gl06rl01z80pe20” is executed in 20 MPI processes.
Fig. 3 shows the results where the performances of XACC are slightly
inferior to those of OpenACC+MPI due to the additional commu-
nication described in Section 3. However, in terms of productivity,
Fig. 2 shows that the coarray features can express communication
more intuitively than MPI functions.

5 SUMMARY

In this paper, we report on the implantation of the NICAM-DC-
MINI using the XACC coarray feature. While our evaluation showed
that the performance of the XACC implementation was slightly in-
ferior to the original OpenACC+MPI implementation, we believe



Performance Evaluation of NICAM-DC-MINI using XcalableACC on Accelerated Cluster

45

40 M XACC
35 OpenACC+MPI

30

Execution Time (sec.)

gl06rl01z80pe10 gl06rl01z80pe20

Target Data

Figure 3: Performance results

the outlook of the XACC implementation could be improved con-
siderably.

In our future work, we will seek to further improve on the per-

formance we have achieved thus far. In the current implementa-
tion of Omni compiler, coarray communication is a blocking op-
eration. Thus, it is considered likely that the performance could

be

improved by positively using asynchronous communication via

coarray|[2].

ACKNOWLEDGEMENTS
This research used the HA-PACS/TCA system provided by Inter-

disciplinary Computational Science Program in the Center for Com-

putational Sciences, University of Tsukuba. The work was sup-

po

rted by the Japan Science and Technology Agency, Core Re-

search for Evolutional Science and Technology program entitled
“Research and Development on Unified Environment of Acceler-
ated Computing and Interconnection for Post-Petascale Era” in the
research area of “Development of System Software Technologies
for Post-Peta Scale High Performance Computing.”

REFERENCES

[

[2

3

[4

[7] XcalableMP Specification Working Group. 2017.

] A publication of the UPC Consortium. 2013. (November 2013).

https://upc-lang.org/assets/Uploads/spec/upc-lang-spec-1.3.pdf.

Akihiro Tabuchi et al. 2017. Implementation and Evaluation of One-sided PGAS

Communication in XcalableACC for Accelerated Clusters. In International Sym-

posium on Cluster, Cloud and Grid Computing (CCGrid) (CCGrid °17).

] Chamberlain B.L. and Callahan D. and Zima H.P. 2007. Parallel Programmability
and the Chapel Language. Int. J. High Perform. Comput. Appl. 21, 3 (Aug. 2007),
291-312.

] Charles Philippe and Grothoff Christian and Saraswat Vijay and Donawa
Christopher and Kielstra Allan and Ebcioglu Kemal and von Praun Christoph
and Sarkar Vivek. 2005. X10: An Object-oriented Approach to Non-uniform
Cluster Computing. SIGPLAN Not. 40, 10 (Oct. 2005), 519-538.

] Karl Furlinger, Tobias Fuchs, and Roger Kowalewski. 2016. DASH: A C++
PGAS Library for Distributed Data Structures and Parallel Algorithms. CoRR
abs/1610.01482 (2016). arXiv:1610.01482 http://arxiv.org/abs/1610.01482

] XcalableACC Specification Working Group. 2017. XcalableACC Specification.
(2017). http://xcalablemp.org/XACC.html.

=

XcalableMP Specification.
(2017). http://xcalablemp.org/specification.

] H. Murai and M. Nakao and H. Iwashita and M. Sato. 2017. Preliminary Per-
formance Evaluation of Coarray-based Implementation of Fiber Miniapp Suite
using XcalableMP PGAS Language. In PGAS Applications Workshop.

] Christiane Jablonowski and David L. Williamson. 2006. A baroclinic in-
stability test case for atmospheric model dynamical cores. Quarterly
Journal of the Royal Meteorological Society 132, 621C (2006), 2943-2975.
https://doi.org/10.1256/qj.06.12

(10]

(1]

(12]

[13

[14]
[15]

[16]

[17

HPC Asia, Jan 2018, Tokyo, Japan

Kumar Vivek and Zheng Yili and Cavé Vincent and Budimli¢ Zoran and Sarkar
Vivek. 2014. HabaneroUPC++: A Compiler-free PGAS Library. In Proceedings of
the 8th International Conference on Partitioned Global Address Space Programming
Models (PGAS ’14). Article 5, 10 pages.

M. Nakao and H. Murai and H. Iwashita and A. Tabuchi and T. Boku and M. Sato.
2017. Implementing Lattice QCD Application with XcalableACC Language on
Accelerated Cluster. In 2017 IEEE International Conference on Cluster Computing.
429-438. https://doi.org/10.1109/CLUSTER.2017.58

M. Nakao and H. Murai and H. Iwashita and T. Boku and M. Sato. 2017. Imple-
mentation and evaluation of the HPC challenge benchmark in the XcalableMP
PGAS language. The International Journal of High Performance Computing Ap-
plications (2017), 1-14. https://doi.org/10.1177/1094342017698214

Matthew Otten et al. 2016. An MPI/OpenACC implementation of a high-order
electromagnetics solver with GPUDirect communication. The International Jour-
nal of High Performance Computing Applications 30, 3 (2016), 320-334.

NICAM developers. 2014. NICAM-DC mini-application. (2014).
https://github.com/fiber-miniapp/nicam-dc-mini.
NICAM developers. 2015.  NICAM dynamical core package.  (2015).

https://scale.aics.riken.jp/nicamdc/.

Nowicki M. and Gorski L. and Grabrczyk P. and Bala P. 2014. PCJ - Java library
for high performance computing in PGAS model. In High Performance Comput-
ing Simulation (HPCS), 2014 International Conference on. 202-209.

Numrich Robert W. and Reid John. 1998. Co-array Fortran for parallel program-
ming. SIGPLAN Fortran Forum 17, 2 (Aug. 1998), 1-31.

Yili Zheng and Kamil, A. and Driscoll, M.B. and Hongzhang Shan and
Yelick, K. 2014. UPC++: A PGAS Extension for C++. In Parallel and
Distributed Processing Symposium, 2014 IEEE 28th International. 1105-1114.
https://doi.org/10.1109/IPDPS.2014.115



