
Performance Evaluation of NICAM-DC-MINI
using XcalableACC on Accelerated Cluster

Masahiro Nakao (RIKEN AICS)
Hitoshi Murai, Akihiro Tabuchi, Taisuke Boku, Mitsuhisa Sato

XcalableACC parallel language

XcalableACC (XACC) is a directive-based language extension of C and
Fortran for accelerated cluster systems (C++ on the table).

Components
XcalableMP (XMP) for distributed-memory parallelism

XMP is a directive-based language extension of C
and Fortran for cluster systems

OpenACC for offloading works for accelerators
OpenACC is also directive-based language extension
for heterogeneous CPU/Accelerator systems

High productivity by directives and coarray features
High performance by direct communication between accelerators

Overview Memory Model

・・
Template

Host

ACC

Host

ACC

Node #2Node #1

OpenACC XACCXMP

XACC function enables users to transfer
data between accelerators and between
accelerator and host memory directly.

XACC for communication of data on accelerators

http://omni-compiler.org

Omni XcalableACC Compiler

Developed by RIKEN AICS and Center for Computational
Sciences in University of Tsukuba

XMP function defines ``Template’’ as a
dummy array that represents a global
index space.

Implementation of NICAM-DC-MINI
What is NICAM-DC-MINI ? Implementation
A subset of NICAM dynamical core package

Evaluation on HA-PACS/TCA
On HA-PACS/TCA system located in University of Tsukuba

Data set is gl06rl01z80, which is executed with strong scaling

do ro=1,romax(halo)
 call mpi_irecv(recvbuf(1,ro), rsize(ro,halo)*cmax, mpi_double_precision, &
 sourcerank(ro,halo), recvtag(ro,halo), &
 ADM_comm_run_world, areq(ro), ierr)
end do

do so=1,somax(halo)
 call mpi_isend(sendbuf(1,so), ssize(so,halo)*cmax, mpi_double_precision, &
 destrank(so,halo), sendtag(so,halo), &
 ADM_comm_run_world, areq(so+romax(halo)), ierr)
end do

call mpi_waitall(acount,areq,stat,ierr)

http://cesdweb.aori.u-tokyo.ac.jp/~nicam/

NICAM stands for Nonhydrostatic ICosahedral Atmospheric Model,
which is an application for Global Cloud Resolving Model
Developed by the Japan Agency for Marine-Earth Science and
Technology (JAMSTEC), Atmosphere and Ocean Research Institute
(AORI) at The University of Tokyo, and RIKEN Advanced Institute for
Computational Science (AICS).

Based on the existing NICAM-DC-MINI using MPI and OpenACC
To exchange sleeve regions among processes, we use coarray
features instead of MPI

MPI_Send/Isend → coarray assignment
MPI_Recv/Irecv → (be deleted)
MPI collective communication → intrinsic subroutine (e.g. co_max)
MPI_Wait and MPI_Barrier → sync all statement

sync all
do so=1,somax(halo)
 recvbuf(1:ssize(so,halo)*cmax, dstimg(so))[destrank(so,halo)+1] = &
 sendbuf(1:ssize(so,halo)*cmax,so)
end do
sync all

This research was supported by Interdisciplinary Computational Science
Program in the Center for Computational Sciences, University of Tsukuba
and the JST CREST entitled ``Research and Development on Unified
Environment of Accelerated Computing and Interconnection for
Post-Petascale Era''.

Acknowledgement

45

40

35

30

25

20

15

10

5

0
10 processes 20 processes

Number of Processes

E
xe

cu
tio

n
Ti

m
e

(s
ec

.) XcalanleACC
OpenACC+MPI

The results of XACC are almost the same as those of OpenACC + MPI

Each computer nodes has four GPUs (NVIDIA K20X)

Additional sync all statement is
required to ensure that the array
recvbuf on all images can be used.

