
Data Model Optimization for Reducing Computational Cost at 

Apache Spark * 

Rohyoung Myung, Han-Yee Kim, Sukyong Choi, Taeweon Suh, Heonchang Yu 
Department of Computer Science and Engineering,  

Korea University 
145 Anam-ro, Seongbuk-gu, Seoul, Korea 

{mry1811, hanyeemy, csukyong, suhtw, yuhc}@korea.ac.kr 

ABSTRACT 

As the performance of distributed parallel processing on big data is 

considered as a main concern, Apache Spark the most prevalent 

open source based distributed processing engine has triggering 

much interest for performance optimization. According to the 

user’s purpose, Apache Spark provides diverse scope of system 

customization via system parameters. In general, main 

configurations of job optimization are: degree of parallelization, 

resource utilization (# of available cores, available memory, and 

etc), and caching. The researches which focus on tuning parameters 

related to distributed execution and which take fully advantage of 

memory caching have been proceeded. However researching data 

structures for optimizing the original distributed processing model 

of Spark and analyzing execution cost when applying them have 

not been considered. In this paper, we propose a data model that 

reduces the execution cost of parallel processing model on Apache 

Spark. In addition, by drilling down a specific example of 

distributed processing API, we prove effectiveness of the proposed 

data model compared to the previous one. Finally, we verify our 

scheme by adapting the proposed model on general big data 

application and prove the validity of it by scaling up its input data 

size and the number of executors. 

KEYWORDS 

Performance Optimization, Data Model, Apache Spark 

1 INTRODUCTION 

The dramatic advance of IoT and sensor system result in influx of 

big data these days. The flowed data which can be used for simple 

data analysis, even for complex deep learning, is so big that 

distributed parallel processing is generally conducted. In master-

slave cluster environment, there are many things to consider: 

distributed processing model in cluster level, parallel processing in 

worker node level, the computing power of cluster system, methods 

for fault tolerance and so on.  

The Apache Spark[1] open source distributed processing engine 

provides high-level API for analyzing big data so that it can support 

implementing applications based on Hadoop Map Reduce 

programming model[2] as well as various data analyzing tasks such 

as machine learning[3] and streaming data processing[4]. Also, 

Spark improves executing performance compared to the previous 

system[5] by adapting in-memory computing, lazy execution. 

Moreover, it supports fault-tolerance by utilizing its own 

distributed data structure called RDD[6]. Since Spark provides the 

libraries necessary for implementing data analysis and default 

system configurations for those applications, its performance fully 

depends on how users and developers tune system parameters, and 

utilize characteristics of the applications. 

In this paper, we propose data model for reducing execution cost 

of distributed processing model on Spark. For proving that our 

scheme actually reduces execution cost, we analyze API generally 

used for data analysis to deduct a cost model and demonstrate 

theoretically that our scheme reduces amount of execution time 

significantly compared to the previous one. Finally we apply our 

scheme to real world application on spark cluster system and 

present the results that our scheme not only decrease execution time 

of the applications but also is independent to the size of input data 

and the number of working nodes. 

2 BACKGROUND 

Spark has a specific architecture for distributed parallel processing 

which is shown at Fig. 1. At first, users submit their application and 

its required input data to Spark Driver. For executing the 

application, Spark Driver transform submitted data to RDD and 

express executing procedure of the RDD into Directed Acyclic 

Graph(DAG).  

 



WOODSTOCK’97, July 2016, El Paso, Texas USA G. Gubbiotti et al. 

 

2 

 

Figure 1: Spark cluster system architecture and interaction 

between user and Spark cluster 

 

Figure 2: Pipelining procedure and inner structure of RDD 

A RDD consists of at least one partition and a partition consists of 

at least one element which is depicted at Fig. 2. There are two 

relationships among RDDs: wide dependency and narrow 

dependency according to relationship between parent and child 

partitions. 

Partitions which have narrow dependency can be pipelined as each 

of them doesn’t have any dependency with one another. However 

it is impossible to pipelining partitions which have wide 

dependency since a parent partition has correlation with multiple 

child partitions. Moreover, wide dependency causes shuffle whose 

execution time is deeply related to the computing power of 

executors, network transmission speed at that time, and occurrence 

of faults. Thus, it is hard to express wide dependency as 

deterministic model. So in this research, we only focus on narrow 

dependency. 

3 DATA SUBMISSION MODEL 

3.1 General API Processing Procedure 

In the case of partitions which have narrow dependency, when a 

user submit application, Spark Driver divides the application into 

the multiple tasks according to RDD DAG and pipelines them. 

Then, it allocates the tasks evenly to executors and they serially 

execute whole records of partitions. Also, the executors create 

multiple threads according to the cores available and allocate 

assigned tasks to the cores evenly so that they execute the partitions 

in parallel.  

At this time, each task is defined as transformation or action. The 

transformations or actions which are own API of Spark[7] are 

divided into two types. The first type such as ‘groupByKey’ and 

‘HashPartitioning’ which has predefined functions execute task 

manually and the second type such as ‘map’ and ‘flatMap’ has inner 

functions which should be defined by Spark user. For example, 

when ‘map’ whose inner function is ‘split’ is processed, whole 

sequence of executing single RDD which is processed at each core 

is described at Fig. 3. 

 

Figure 3: Sequence diagram when Spark API ‘map’ and its 

inner function ‘split’ is processed. The shaded parts(𝜶𝟏-𝜶𝟓) are 

the additional cost for each element. 

3.2 Computational Cost Model 

When an executor process single partition which is known as ‘task’ 

at Spark, total execution time is divided into two parts. The first 

part includes the cost that when an executor traverse whole records 

of single partition and apply its inner functions into each records 

iteratively. It is essential execution cost so that it can be described 

as deterministic model: execution time for applying inner function 

to single record multiplied by the number of whole records in a 

partition. 

The second part is additional cost that not correlated to the number 

of records but correlated to the number of elements which is caused 

when an executor processes single element. For example, there are 

class generation, object initialization, and other additional methods. 

They are invoked when the executor processes an element and the 

cost(shaded parts in Fig. 3.: 𝛼1 - 𝛼5 ) can be modeled 

deterministically: total execution time of additional overheads 

multiplied by the number of whole elements in a partition. The 

definitions of all notations required for calculating the two costs are 

described at Table 1. 

Table 1: Definition of the notations for computational cost 

model 

Notation Meaning 

e Total number of elements in a partition 
r The number of records in an element 

l The iterative overhead for executing single record 

𝛼 The additional overhead for executing single element 

K The number of records per element 

C Original total cost for executing single task 
C’ Optimized total cost for executing single task 

 

Equation 1. models the summation of the first and the second part. 

The first part is described as 𝑟 ∗ 𝑙 and the second part is described 

as 𝑒 ∗  𝛼 

𝐶 =  𝑟 ∗ 𝑙 + 𝑒 ∗  𝛼 (1) 



Magnetic Normal Modes of Bi-Component Permalloy Structures WOODSTOCK’97, July 2016, El Paso, Texas USA 

 

 3 

Since the number of records in a partition is static, the execution 

cost of the first part is also static. However, when the number of 

records in an element is multiplied by K total cost can be described 

as Equation 2. 

𝐶’ =  𝑟 ∗  𝑙 +  
1

𝐾
∗ 𝑒 ∗  𝛼 (2) 

The first half of Equation 2 is same as the previous equation but 

the cost for the last half of the equation is reduced as the number of 

additional overheads is divided by K. However, notice that when K 

is increased, task size for executing an element is also increased 

which causes additional ‘garbage collection overhead’ which is 

proportional to K. Therefore, users should find optimal value for K 

by profiling their cluster system environment before applying our 

model. 

4 EXPERIMENTAL RESULT 

In the first experiment, we prove that the performance enhancement 

of our model is independent to input data size. So we fix the number 

of executor as 1 and increase the input data size from 1GB to 5GB. 

We selected application ‘WordCount’ since it is widely used 

benchmark for performance evaluation. Fig. 4. describes that when 

applying our model with proper value ‘K’, in our system: 100, the 

execution time of the application is reduced at most 3.5x more than 

the vanilla data model. Also, when the size of input data is linearly 

increased the execution time is increased linearly. 

 

Figure 4: Execution time(s) of ‘WordCount’ when data size is 

linearly increased(1-5GB) with single executor and ‘K’: 

1(vanilla model), 100(our scheme applied). 

In the second experiment, we demonstrate that the performance 

enhancement of our model is scalable to the number of executors. 

Thus, we fix the size of input data as 5GB and increase the number 

of executors from 1 to 3. We used ‘WordCount’ as application for 

the same reason. Fig. 5. describes that when the number of 

executors are increased linearly, the execution time of the 

application is decreased linearly which is inversely proportional to 

the number of executors. It also describes that our model reduces 

the execution time at least 2x. Note that the value ‘K’ is 100 but 

should be carefully determined with regard to user’s cluster system 

specifications. 

 

Figure 5: Execution time(s) of ‘WordCount’ when the number 

of executors is linearly increased(1-3) with data size:5GB and 

‘K’: 1(vanilla model), 100(our scheme applied). 

5 CONCLUSION 

Our research analyzes structure details of Spark, its distributed data 

structure, and its details of distributed processing procedure. We 

proposed the data model which significantly reduces execution 

time of distributed parallel model. We demonstrate how our data 

model reduces execution cost by deterministically modeling the 

cost of processing multiple series of data in parallel. Finally, we 

provide experimental results for validating our model on real-world 

Spark cluster. Also, we prove that the data model reduces total 

execution time of application whether the size of data and the 

number of executors are increased or not. However, the main idea 

of our research: tuning the number of records per element requires 

another model for calculating overhead of ‘garbage collection’. 

Currently, we model correlation among garbage collection 

overhead, cluster system specifications, task and partition size 

configuration, real size of single task for building integrated model 

which includes not only the data model of this paper but also 

supplement model considering garbage collection overhead and 

customizable system configurations. 

ACKNOWLEDGMENTS 

This work was supported by the National Research Foundation of 

Korea(NRF) grant funded by the Korea government(MSIP) (No. 

2017M3C4A7081955). 

REFERENCES 
[1] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: 

Cluster computing with working sets. In Proc. USENIX Hot- Cloud, 2010 

[2] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large 

clusters. In Proc. USENIX OSDI, 2004 

[3] “Spark MLlib” https://spark.apache.org/MLlib/ 

[4] “Spark Streaming.” https://spark.apache.org/streaming/ 

[5] Shvachko, Konstantin, et al. "The hadoop distributed file system." Mass 

storage systems and technologies (MSST), 2010 IEEE 26th symposium on. 

IEEE, 2010. 



WOODSTOCK’97, July 2016, El Paso, Texas USA G. Gubbiotti et al. 

 

4 

 

[6] M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant abstraction 

for in-memory cluster computing,” in Proceedings of the 9th USENIX 

Conference on NSDI. USENIX Association, 2012. 

[7] “Spark Docs” https://spark.apache.org/docs/latest 

  

 


