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ABSTRACT 
For development of exascale HPC systems, power 
consumption is one of the major design constraints. 
Hardware-overprovisioning is an effective approach to build 
future systems under such constraints, and run-time power 
optimization becomes indispensable for their operation. 
Dynamic Frequency Scaling (DFS) and Dynamic Concurrency 
Throttling (DCT) are well-known techniques, however, 
practical use is limited to a DB-based approach, which records 
and reuses the relationship between a job’s execution time and 
its locked CPU frequency. 

We are developing a run-time library which conducts power 
optimization during the execution of a job. Its optimization 
assumes that performance fluctuation by ~10% is ignored or 
acceptable by application users. For each application’s region, 
defined by the application developer based on computational 
characteristics, the library searches the best DFS/DCT 
configuration in the range of acceptable performance 
degradation. As the results of evaluation with HPCG, NAS 
Parallel Benchmarks and NICAM-DC-MINI demonstrated, our 
“on-the-fly” optimization was effective. 
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1 INTRODUCTION 
For development of exascale HPC systems, power consumption 
is one of the major design constraints. Hardware-
overprovisioning is an effective approach to build future systems 
under such constraints. Since job throughput of hardware-
overprovisioned systems is restricted by power limit, 
“performance-per-watt” has become a more important indicator 
of efficient system use. 
Because application developers are not expected to pay much 
attention to “performance-per-watt”, power optimizations 
should be done by system providers and system administrators. 
Although optimization techniques for power and energy, such as 
Dynamic Frequency Scaling (DFS) and Dynamic Concurrency 
Throttling (DCT), have been studied well, practical use is limited 
to a DB-based approach, which records and reuses the 
relationship between a job’s execution time and its locked CPU 

frequency. Conducting DFS/DCT optimization during the 
execution of a job is simple to use, adaptive to the environment 
of executing systems, and possibly robust in terms of a CPU’s 
manufacturing variability. 

2 OPTIMIZATION ALGORITHM 

2.1 Assumptions 
In order to design the algorithm of run-time power optimization, 
we made the following assumptions; 

 Target application does iterative computation, such as 
time integration and iterative solver. 

 The application can be divided into several regions 
based on computational characteristics, such as 
ComputeMG and ComputeSPMV in the HPCG 
benchmark. 

 From the application users’ viewpoint, performance 
fluctuation by ~10% is ignored or acceptable. 

2.2 Optimization Procedure 
The optimization target is a DFS/DCT configuration of maximal 
“performance-per-watt” for each region in the range of 
acceptable performance degradation. Optimization proceeds by 
the following steps: 

1. For use as reference performance, observe the 
performance during initial iteration(s) 

2. Under the “Turbo” frequency, search the number of 
threads in decreasing order for the best efficiency 

3. Under the base frequency, search the number of 
threads in the same way as Step 2 

4. With the number of threads chosen by Step 2&3 as the 
best efficiency in the range of acceptable performance 
degradation, search CPU frequency in decreasing order 
for the best efficiency 

5. When performance degradation exceeds the acceptable 
range, continue the search after adding one more 
thread 

Table 1. Measurement Environments 

 Model Details 

Sandy Bridge Xeon E5-2680 2.7GHz, 8 cores, TDP 130W 
Haswell Xeon E5-2698v3 2.3GHz, 16 cores, TDP 135W 



 

Fig. 1. Optimization behavior for ComputeSPMV region of HPCG 
on Haswell. 

2.3 Calculation of Efficiency 
The optimization procedure works based on the “efficiency” 
value, as described above. Since we are assuming that the 
amount of computation in each region is constant (for 
simplicity’s sake), relative “performance-per-watt”, or 
“efficiency”, equals the inverse of relative energy consumption. 
RAPL on Intel processors can measure the energy consumption, 
however, the measurement interval is 1ms and affects the 
accuracy of the “efficiency” value for short regions. Therefore, 
we adopt “estimated energy” for the calculation of “efficiency” 
and compare the optimization result with a result based on the 
RAPL measurement in the following evaluation. Those 
calculations are defined as follows: 

 When measuring by RAPL, efficiency = “measured 
energy for the reference performance” / “measured 
energy for a configuration”. 

 When estimating without RAPL, “measured energy” is 
replaced with “estimated energy“;  
“estimated energy” = “CPU cycles” * (1 + (“the number 
of threads” - 1) * “correction factor”). 

The “correction factor”, which is 0.06 for Haswell and 0.13 for 
Sandy Bridge, was derived from the results of the STREAM 
benchmark by regression analysis. 

 

Fig. 2. DCT optimization result for NICAM-DC-MINI 
on 10 nodes of Sandy Bridge x2. 

Table 2. Applications Used for Evaluation 

 Region definition Comments 
HPCG According to timing 

reports in YAML output 
Tuned by Intel based 
on V3.0 

NAS Parallel 
Benchmarks 

According to timer_ 
start/stop calls 

Only iterative kernels 
in V3.3.1 by OpenMP 

NICAM-DC-
MINI 

According to DEBUG_ 
rapstart/rapend calls 

V1.0.0 with gl06rl01 
z80pe40 dataset 

3 EVALUATION 
For the HPCG benchmark on Haswell, the optimization chose 
1.19GHz with 14.0 threads on average without the RAPL 
measurement, which improved the “performance-per-watt” by 
24%. The optimization result based on the RAPL measurement 
showed 26% improvement at 1.40GHz with 13.2 threads but the 
difference from the improvements without RAPL was small 
enough. 
Among 7 iterative kernels in the NAS Parallel Benchmarks, 6 
kernels showed improvement in “performance-per-watt” up to 
70%, which was achieved for SP on Sandy Bridge at 2.02GHz 
with 4.7 threads. However, the optimization for MG, which is a 
memory-intensive kernel, was too fine and canceled its own 
effect. 
DCT optimization results on the 10 nodes of Sandy Bridge 
running NICAM-DC-MINI, which is a mini app for Post-K 
development, showed 13% power reduction in exchange for 3% 
slowdown of its execution using 5.1 cores/socket. (Fig. 2) It 
indicates the possibility to increase headroom for power-shifting 
between jobs. 

4 RELATED WORK 
READEX[1] proposes a methodology for automatic tuning to 
improve energy efficiency. In contrast to our approach, pre-
execution of applications with a representative dataset is 
necessary for this methodology. 
GEOPM[2] is an open source run-time framework for 
researching energy management solutions. By changing the 
RAPL settings, its power-balancing plug-in improves a job’s 
execution time, whose performance was originally degraded by 
constant power-capping by RAPL. 

5 SUMMARY AND FUTURE WORK 
DFS and DCT techniques were integrated into a run-time 
“performance-per-watt” optimization and its “on-the-fly” 
optimization demonstrated its effectiveness. 
Further studies are planned as follows: confirming the 
applicability to new generation Xeons, studying performance 
controllability by the degree of acceptable performance 
degradation, drafting of a concrete scenario of power-shifting 
between jobs, and so on. 

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80

Iteration count

Relative performance (w/ RAPL)

Relative efficiency (measured by RAPL)

Relative performance (w/o RAPL)

Relative efficiency (estimated w/o RAPL)

Step 2 Step 3 Step 4&5

1.5GHz w/ 8 threads was chosen.

0

50

100

150

200

250

300

0 200 400 600 800 1000

H
ea

d
 n

o
d

e'
s 

p
o

w
er

 
co

n
su

m
p

ti
o

n
 (

W
)

Elapsed time (sec)

Not optimized Optimized

3% slowdown w/ 5.1 cores/socket
13% power reduction



 

ACKNOWLEDGMENTS 
This work was partially supported by Japan Science and 
Technology Agency under Core Research for Evolutional 
Science and Technology. 

REFERENCES 
[1] Oleynik, Yury, et al. “Run-time exploitation of application dynamism for 

energy-efficient exascale computing (READEX).” Computational Science and 
Engineering (CSE), 2015 IEEE 18th International Conference on. IEEE, 2015. 

[2] Eastep, Jonathan, et al. “Global Extensible Open Power Manager: A Vehicle for 
HPC Community Collaboration on Co-Designed Energy Management 
Solutions.” International Supercomputing Conference. Springer, Cham, 2017. 

 


