
Run-Time DFS/DCT Optimization for Power-Constrained HPC
Systems

Ikuo Miyoshi
Fujitsu Limited

Shinobu Miwa
The University of

Electro-Communications

Koji Inoue
Kyushu University

Masaaki Kondo
The University of Tokyo

ABSTRACT
For development of exascale HPC systems, power
consumption is one of the major design constraints.
Hardware-overprovisioning is an effective approach to build
future systems under such constraints, and run-time power
optimization becomes indispensable for their operation.
Dynamic Frequency Scaling (DFS) and Dynamic Concurrency
Throttling (DCT) are well-known techniques, however,
practical use is limited to a DB-based approach, which records
and reuses the relationship between a job’s execution time and
its locked CPU frequency.

We are developing a run-time library which conducts power
optimization during the execution of a job. Its optimization
assumes that performance fluctuation by ~10% is ignored or
acceptable by application users. For each application’s region,
defined by the application developer based on computational
characteristics, the library searches the best DFS/DCT
configuration in the range of acceptable performance
degradation. As the results of evaluation with HPCG, NAS
Parallel Benchmarks and NICAM-DC-MINI demonstrated, our
“on-the-fly” optimization was effective.

CCS CONCEPTS
• Hardware~Power estimation and optimization

KEYWORDS
High performance computing, power-constrained system, power
optimization, run-time optimization, auto-tuning, dynamic
frequency scaling, dynamic concurrency throttling

1 INTRODUCTION
For development of exascale HPC systems, power consumption
is one of the major design constraints. Hardware-
overprovisioning is an effective approach to build future systems
under such constraints. Since job throughput of hardware-
overprovisioned systems is restricted by power limit,
“performance-per-watt” has become a more important indicator
of efficient system use.
Because application developers are not expected to pay much
attention to “performance-per-watt”, power optimizations
should be done by system providers and system administrators.
Although optimization techniques for power and energy, such as
Dynamic Frequency Scaling (DFS) and Dynamic Concurrency
Throttling (DCT), have been studied well, practical use is limited
to a DB-based approach, which records and reuses the
relationship between a job’s execution time and its locked CPU

frequency. Conducting DFS/DCT optimization during the
execution of a job is simple to use, adaptive to the environment
of executing systems, and possibly robust in terms of a CPU’s
manufacturing variability.

2 OPTIMIZATION ALGORITHM

2.1 Assumptions
In order to design the algorithm of run-time power optimization,
we made the following assumptions;

 Target application does iterative computation, such as
time integration and iterative solver.

 The application can be divided into several regions
based on computational characteristics, such as
ComputeMG and ComputeSPMV in the HPCG
benchmark.

 From the application users’ viewpoint, performance
fluctuation by ~10% is ignored or acceptable.

2.2 Optimization Procedure
The optimization target is a DFS/DCT configuration of maximal
“performance-per-watt” for each region in the range of
acceptable performance degradation. Optimization proceeds by
the following steps:

1. For use as reference performance, observe the
performance during initial iteration(s)

2. Under the “Turbo” frequency, search the number of
threads in decreasing order for the best efficiency

3. Under the base frequency, search the number of
threads in the same way as Step 2

4. With the number of threads chosen by Step 2&3 as the
best efficiency in the range of acceptable performance
degradation, search CPU frequency in decreasing order
for the best efficiency

5. When performance degradation exceeds the acceptable
range, continue the search after adding one more
thread

Table 1. Measurement Environments

 Model Details

Sandy Bridge Xeon E5-2680 2.7GHz, 8 cores, TDP 130W
Haswell Xeon E5-2698v3 2.3GHz, 16 cores, TDP 135W

Fig. 1. Optimization behavior for ComputeSPMV region of HPCG
on Haswell.

2.3 Calculation of Efficiency
The optimization procedure works based on the “efficiency”
value, as described above. Since we are assuming that the
amount of computation in each region is constant (for
simplicity’s sake), relative “performance-per-watt”, or
“efficiency”, equals the inverse of relative energy consumption.
RAPL on Intel processors can measure the energy consumption,
however, the measurement interval is 1ms and affects the
accuracy of the “efficiency” value for short regions. Therefore,
we adopt “estimated energy” for the calculation of “efficiency”
and compare the optimization result with a result based on the
RAPL measurement in the following evaluation. Those
calculations are defined as follows:

 When measuring by RAPL, efficiency = “measured
energy for the reference performance” / “measured
energy for a configuration”.

 When estimating without RAPL, “measured energy” is
replaced with “estimated energy“;
“estimated energy” = “CPU cycles” * (1 + (“the number
of threads” - 1) * “correction factor”).

The “correction factor”, which is 0.06 for Haswell and 0.13 for
Sandy Bridge, was derived from the results of the STREAM
benchmark by regression analysis.

Fig. 2. DCT optimization result for NICAM-DC-MINI
on 10 nodes of Sandy Bridge x2.

Table 2. Applications Used for Evaluation

 Region definition Comments
HPCG According to timing

reports in YAML output
Tuned by Intel based
on V3.0

NAS Parallel
Benchmarks

According to timer_
start/stop calls

Only iterative kernels
in V3.3.1 by OpenMP

NICAM-DC-
MINI

According to DEBUG_
rapstart/rapend calls

V1.0.0 with gl06rl01
z80pe40 dataset

3 EVALUATION
For the HPCG benchmark on Haswell, the optimization chose
1.19GHz with 14.0 threads on average without the RAPL
measurement, which improved the “performance-per-watt” by
24%. The optimization result based on the RAPL measurement
showed 26% improvement at 1.40GHz with 13.2 threads but the
difference from the improvements without RAPL was small
enough.
Among 7 iterative kernels in the NAS Parallel Benchmarks, 6
kernels showed improvement in “performance-per-watt” up to
70%, which was achieved for SP on Sandy Bridge at 2.02GHz
with 4.7 threads. However, the optimization for MG, which is a
memory-intensive kernel, was too fine and canceled its own
effect.
DCT optimization results on the 10 nodes of Sandy Bridge
running NICAM-DC-MINI, which is a mini app for Post-K
development, showed 13% power reduction in exchange for 3%
slowdown of its execution using 5.1 cores/socket. (Fig. 2) It
indicates the possibility to increase headroom for power-shifting
between jobs.

4 RELATED WORK
READEX[1] proposes a methodology for automatic tuning to
improve energy efficiency. In contrast to our approach, pre-
execution of applications with a representative dataset is
necessary for this methodology.
GEOPM[2] is an open source run-time framework for
researching energy management solutions. By changing the
RAPL settings, its power-balancing plug-in improves a job’s
execution time, whose performance was originally degraded by
constant power-capping by RAPL.

5 SUMMARY AND FUTURE WORK
DFS and DCT techniques were integrated into a run-time
“performance-per-watt” optimization and its “on-the-fly”
optimization demonstrated its effectiveness.
Further studies are planned as follows: confirming the
applicability to new generation Xeons, studying performance
controllability by the degree of acceptable performance
degradation, drafting of a concrete scenario of power-shifting
between jobs, and so on.

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80

Iteration count

Relative performance (w/ RAPL)

Relative efficiency (measured by RAPL)

Relative performance (w/o RAPL)

Relative efficiency (estimated w/o RAPL)

Step 2 Step 3 Step 4&5

1.5GHz w/ 8 threads was chosen.

0

50

100

150

200

250

300

0 200 400 600 800 1000

H
ea

d
 n

o
d

e'
s

p
o

w
er

co

n
su

m
p

ti
o

n
 (

W
)

Elapsed time (sec)

Not optimized Optimized

3% slowdown w/ 5.1 cores/socket
13% power reduction

ACKNOWLEDGMENTS
This work was partially supported by Japan Science and
Technology Agency under Core Research for Evolutional
Science and Technology.

REFERENCES
[1] Oleynik, Yury, et al. “Run-time exploitation of application dynamism for

energy-efficient exascale computing (READEX).” Computational Science and
Engineering (CSE), 2015 IEEE 18th International Conference on. IEEE, 2015.

[2] Eastep, Jonathan, et al. “Global Extensible Open Power Manager: A Vehicle for
HPC Community Collaboration on Co-Designed Energy Management
Solutions.” International Supercomputing Conference. Springer, Cham, 2017.

