
Background
• For development of exascale HPC systems, power consumption

is one of the major design constraints. HW-overprovisioning is
an effective approach to build systems under such constraints.

• Since job throughput of HW-overprovisioned systems is
restricted by power limit, “performance-per-watt” has
become a more important indicator of efficient system use.

Motivation
• Because application developers are not expected to pay much attention to “performance-per-

watt”, power optimizations should be done by system providers and system administrators.
• Although optimization techniques for power and energy, such as DFS and DCT, have been studied

well, practical use is limited to a DB-based approach, which records and reuses the relationship
between a job’s execution time and its locked CPU frequency.

• Conducting DFS/DCT optimization during the execution of a job is simple to use, adaptive to the
environment of executing systems, and possibly robust in terms of CPU’s manufacturing variability.

Optimization Algorithm
• Assumptions
 Target application does iterative computation,

such as time integration and iterative solver, and
can be divided into several regions based on
computational characteristics.

 From the application users’ viewpoint, performance
fluctuation by ~10% is ignored or acceptable.

• The optimization target is a DFS/DCT configuration of
max “performance-per-watt” for each region in the range of acceptable performance degradation.

• Optimization steps
1. For use as reference performance, observe the

performance during initial iteration(s)
2. Under the “Turbo” frequency, search the # of

threads in decreasing order for the best efficiency
3. Under the base frequency, search the # of threads

in the same way as Step 2
4. With the # of threads chosen by Step 2&3 as the

best efficiency in the range of acceptable
performance degradation, search CPU frequency
in decreasing order for the best efficiency

5. When performance degradation exceeds the acceptable
range, continue the search after adding one more thread

• Calculation of efficiency
• When measuring by RAPL, efficiency = “measured energy for the reference performance”

/ “measured energy for a configuration”.
• When estimating without RAPL, “measured energy” is replaced with “estimated energy“;

“estimated energy” = “CPU cycles” * (1 + (“# of threads” - 1) * “correction factor”).
The “correction factor”, which is 0.06 for Haswell and 0.13 for Sandy Bridge, was derived from
the results of the STREAM benchmark by regression analysis.

Evaluation
• For the HPCG benchmark on Haswell, the

optimization chose 1.19GHz with 14.0 threads on
average without the RAPL measurement, which
improved the “performance-per-watt” by 24%.

• Among 7 iterative kernels in the NAS Parallel
Benchmarks, 6 kernels showed improvement in
“performance-per-watt” up to 70%. However, the
optimization for MG, which is a memory-intensive
kernel, was too fine and canceled its own effect.

• Results on the 10 nodes of Sandy Bridge running
NICAM-DC-MINI, which is a mini app for Post-K
development, indicated the possibility to increase
headroom for power-shifting between jobs.

Related Work
• READEX[1] proposes a methodology for automatic

tuning to improve energy efficiency. In contrast to
our approach, pre-execution of applications with a
representative dataset is necessary for this methodology.

• GEOPM[2] is an open source run-time framework for researching energy management solutions.
By changing the RAPL settings, its power-balancing plug-in improves a job’s execution time, whose
performance was originally degraded by constant power-capping by RAPL.

Summary and Future Work
• DFS and DCT techniques were integrated into a run-time “performance-per-watt” optimization

and its “on-the-fly” optimization demonstrated its effectiveness.
• Further studies are planned as follows: confirming the applicability to new generation Xeons,

studying performance controllability by the degree of acceptable performance degradation,
drafting of a concrete scenario of power-shifting between jobs, and so on.

References
1. Oleynik, Yury, et al. “Run-time exploitation of application dynamism for energy-efficient exascale

computing (READEX).” Computational Science and Engineering (CSE), 2015 IEEE 18th International
Conference on. IEEE, 2015.

2. Eastep, Jonathan, et al. “Global Extensible Open Power Manager: A Vehicle for HPC Community
Collaboration on Co-Designed Energy Management Solutions.” International Supercomputing
Conference. Springer, Cham, 2017.

Run-Time DFS/DCT Optimization for Power-Constrained HPC Systems*
Ikuo Miyoshi1, Shinobu Miwa2, Koji Inoue3 and Masaaki Kondo4

1Fujitsu Limited, 2The University of Electro-Communications, 3Kyushu University, 4The University of Tokyo

Relative “performance-per-watt” of HPCG on Haswell

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Sandy Bridge Haswell Sandy Bridge Haswell Sandy Bridge Haswell Sandy Bridge Haswell Sandy Bridge Haswell Sandy Bridge Haswell Sandy Bridge Haswell

BT CG FT LU MG SP UA

Relative performance Relative power consumption Relative "performance-per-watt"

*This work was partially supported by JST under CREST.

Max load

Base

CPU

Mem

NW

GPU

App. A App. B

Conventional design

Power constraint

Large gap

Power-constrained
adaptive system

Max load App. A App. B

Over-
provisioning

Power

Power
optimization

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1.2 0.24 0.44 0.61 0.77 0.91 1.04 1.15 1.26 1.34 1.39 1.42 1.43 1.45 1.44 1.43 1.42

1.3 0.26 0.46 0.64 0.80 0.94 1.06 1.18 1.27 1.34 1.39 1.41 1.42 1.41 1.40 1.40 1.38

1.4 0.27 0.48 0.66 0.83 0.96 1.10 1.21 1.30 1.36 1.38 1.40 1.41 1.40 1.38 1.37 1.36

1.5 0.28 0.50 0.69 0.85 1.00 1.12 1.23 1.32 1.36 1.38 1.38 1.37 1.37 1.35 1.34 1.32

1.6 0.29 0.52 0.71 0.87 1.01 1.15 1.25 1.33 1.36 1.37 1.37 1.36 1.35 1.33 1.32 1.30

1.7 0.30 0.54 0.73 0.89 1.03 1.16 1.26 1.33 1.35 1.35 1.34 1.34 1.32 1.31 1.29 1.27

1.8 0.31 0.55 0.73 0.90 1.03 1.15 1.25 1.30 1.32 1.31 1.30 1.29 1.27 1.25 1.23 1.20

1.9 0.32 0.56 0.75 0.90 1.04 1.16 1.23 1.28 1.29 1.28 1.27 1.25 1.24 1.21 1.19 1.17

2.0 0.33 0.57 0.76 0.91 1.05 1.16 1.23 1.27 1.26 1.26 1.25 1.22 1.21 1.19 1.16 1.14

2.1 0.34 0.58 0.77 0.92 1.05 1.17 1.22 1.25 1.25 1.24 1.22 1.20 1.18 1.16 1.14 1.11

2.2 0.34 0.59 0.77 0.93 1.06 1.16 1.21 1.23 1.23 1.21 1.19 1.17 1.15 1.13 1.11 1.08

2.3 0.35 0.59 0.78 0.93 1.06 1.16 1.20 1.21 1.21 1.19 1.17 1.15 1.12 1.10 1.08 1.05

Turbo 0.38 0.59 0.74 0.86 0.97 1.04 1.08 1.14 1.15 1.13 1.11 1.09 1.06 1.04 1.01 1.00

C
P

U
 f

re
q

u
e

n
cy

of threads

Configurations for ~10%
performance degradation

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80

Iteration count

Relative performance (w/ RAPL)

Relative efficiency (measured by RAPL)

Relative performance (w/o RAPL)

Relative efficiency (estimated w/o RAPL)

Optimization behavior for ComputeSPMV
region of HPCG on Haswell

Step 2 Step 3 Step 4&5

1.5GHz w/ 8 threads was chosen.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Not optimized Optimized w/ RAPL Optimized w/o RAPL

Relative performance Relative power consumption

Relative "performance-per-watt"

Optimization results for HPCG on Haswell

1.40GHz w/
13.2 threads

1.19GHz w/
14.0 threads

26% improved 24% improved

Optimization results for NAS Parallel Benchmarks class C by OpenMP on Sandy Bridge and Haswell

2.02GHz w/
4.7 threads

1.49GHz w/
7.9 threads

70% improved
46% improved

0

50

100

150

200

250

300

0 200 400 600 800 1000

H
ea

d
 n

o
d

e'
s

p
o

w
er

co

n
su

m
p

ti
o

n
 (

W
)

Elapsed time (sec)

Not optimized Optimized

DCT optimization result for NICAM-DC-MINI
on 10 nodes of Sandy Bridge x2

3% slowdown w/ 5.1 cores/socket
13% power reduction

Measurement environments: Xeon E5-2680 2.7GHz 8 cores (Sandy Bridge), Xeon E5-2698v3 2.3GHz 16 cores (Haswell)

