
Background
• For development of exascale HPC systems, power consumption 

is one of the major design constraints. HW-overprovisioning is 
an effective approach to build systems under such constraints.

• Since job throughput of HW-overprovisioned systems is 
restricted by power limit, “performance-per-watt” has 
become a more important indicator of efficient system use.

Motivation
• Because application developers are not expected to pay much attention to “performance-per-

watt”, power optimizations should be done by system providers and system administrators.
• Although optimization techniques for power and energy, such as DFS and DCT, have been studied 

well, practical use is limited to a DB-based approach, which records and reuses the relationship 
between a job’s execution time and its locked CPU frequency.

• Conducting DFS/DCT optimization during the execution of a job is simple to use, adaptive to the 
environment of executing systems, and possibly robust in terms of CPU’s manufacturing variability.

Optimization Algorithm
• Assumptions
 Target application does iterative computation, 

such as time integration and iterative solver, and 
can be divided into several regions based on 
computational characteristics.

 From the application users’ viewpoint, performance 
fluctuation by ~10% is ignored or acceptable.

• The optimization target is a DFS/DCT configuration of 
max “performance-per-watt” for each region in the range of acceptable performance degradation.

• Optimization steps
1. For use as reference performance, observe the 

performance during initial iteration(s)
2. Under the “Turbo” frequency, search the # of 

threads in decreasing order for the best efficiency
3. Under the base frequency, search the # of threads 

in the same way as Step 2
4. With the # of threads chosen by Step 2&3 as the 

best efficiency in the range of acceptable 
performance degradation, search CPU frequency 
in decreasing order for the best efficiency

5. When performance degradation exceeds the acceptable 
range, continue the search after adding one more thread

• Calculation of efficiency
• When measuring by RAPL, efficiency = “measured energy for the reference performance” 

/ “measured energy for a configuration”.
• When estimating without RAPL, “measured energy” is replaced with “estimated energy“; 

“estimated energy” = “CPU cycles” * (1 + (“# of threads” - 1) * “correction factor”). 
The “correction factor”, which is 0.06 for Haswell and 0.13 for Sandy Bridge, was derived from 
the results of the STREAM benchmark by regression analysis.

Evaluation
• For the HPCG benchmark on Haswell, the 

optimization chose 1.19GHz with 14.0 threads on 
average without the RAPL measurement, which 
improved the “performance-per-watt” by 24%.

• Among 7 iterative kernels in the NAS Parallel 
Benchmarks, 6 kernels showed improvement in 
“performance-per-watt” up to 70%. However, the 
optimization for MG, which is a memory-intensive 
kernel, was too fine and canceled its own effect.

• Results on the 10 nodes of Sandy Bridge running 
NICAM-DC-MINI, which is a mini app for Post-K 
development, indicated the possibility to increase 
headroom for power-shifting between jobs.

Related Work
• READEX[1] proposes a methodology for automatic 

tuning to improve energy efficiency. In contrast to 
our approach, pre-execution of applications with a 
representative dataset is necessary for this methodology.

• GEOPM[2] is an open source run-time framework for researching energy management solutions. 
By changing the RAPL settings, its power-balancing plug-in improves a job’s execution time, whose 
performance was originally degraded by constant power-capping by RAPL.

Summary and Future Work
• DFS and DCT techniques were integrated into a run-time “performance-per-watt” optimization 

and its “on-the-fly” optimization demonstrated its effectiveness.
• Further studies are planned as follows: confirming the applicability to new generation Xeons, 

studying performance controllability by the degree of acceptable performance degradation, 
drafting of a concrete scenario of power-shifting between jobs, and so on.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1.2 0.24 0.44 0.61 0.77 0.91 1.04 1.15 1.26 1.34 1.39 1.42 1.43 1.45 1.44 1.43 1.42

1.3 0.26 0.46 0.64 0.80 0.94 1.06 1.18 1.27 1.34 1.39 1.41 1.42 1.41 1.40 1.40 1.38

1.4 0.27 0.48 0.66 0.83 0.96 1.10 1.21 1.30 1.36 1.38 1.40 1.41 1.40 1.38 1.37 1.36

1.5 0.28 0.50 0.69 0.85 1.00 1.12 1.23 1.32 1.36 1.38 1.38 1.37 1.37 1.35 1.34 1.32

1.6 0.29 0.52 0.71 0.87 1.01 1.15 1.25 1.33 1.36 1.37 1.37 1.36 1.35 1.33 1.32 1.30

1.7 0.30 0.54 0.73 0.89 1.03 1.16 1.26 1.33 1.35 1.35 1.34 1.34 1.32 1.31 1.29 1.27

1.8 0.31 0.55 0.73 0.90 1.03 1.15 1.25 1.30 1.32 1.31 1.30 1.29 1.27 1.25 1.23 1.20

1.9 0.32 0.56 0.75 0.90 1.04 1.16 1.23 1.28 1.29 1.28 1.27 1.25 1.24 1.21 1.19 1.17

2.0 0.33 0.57 0.76 0.91 1.05 1.16 1.23 1.27 1.26 1.26 1.25 1.22 1.21 1.19 1.16 1.14

2.1 0.34 0.58 0.77 0.92 1.05 1.17 1.22 1.25 1.25 1.24 1.22 1.20 1.18 1.16 1.14 1.11

2.2 0.34 0.59 0.77 0.93 1.06 1.16 1.21 1.23 1.23 1.21 1.19 1.17 1.15 1.13 1.11 1.08

2.3 0.35 0.59 0.78 0.93 1.06 1.16 1.20 1.21 1.21 1.19 1.17 1.15 1.12 1.10 1.08 1.05

Turbo 0.38 0.59 0.74 0.86 0.97 1.04 1.08 1.14 1.15 1.13 1.11 1.09 1.06 1.04 1.01 1.00
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Optimization results for HPCG on Haswell
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Optimization results for NAS Parallel Benchmarks class C by OpenMP on Sandy Bridge and Haswell
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DCT optimization result for NICAM-DC-MINI
on 10 nodes of Sandy Bridge x2

3% slowdown w/ 5.1 cores/socket
13% power reduction

Measurement environments: Xeon E5-2680 2.7GHz 8 cores (Sandy Bridge), Xeon E5-2698v3 2.3GHz 16 cores (Haswell)


