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ABSTRACT 

A micromagnetic simulator is widely used for analyzing the 

dynamic behavior of magnetization. However, it is inefficient in 

terms of time consumption. In this paper, we investigated several 

methods for increasing the performance of the simulator using the 

supercomputer FX10. We show that parallelizing the first element 

of a data array makes it possible to speed up the calculation time 

for MPI_Allgather(). We also demonstrate that hybrid 

parallelization of the message passing interface (MPI) with 

MPI_Allgather() and OpenMP is effective.  
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1  INTRODUCTION 

A micromagnetic simulator is used for analyzing the dynamic 

behavior of magnetization, which shows the strength and the 
magnetization direction of a magnet, and is commonly used for 

designing various magnetic products including hard disk drives 

[1]. However, the calculation of static magnetic fields among a 

huge number of small nanosized cells, into which the simulation 
model discretizes the simulated field, is time consuming. 

In this work, we used the supercomputer FX10 at the 

University of Tokyo to investigate the possibility of using 

parallelizing methods to decrease the calculation time. First, we 

present a parallelization of the message passing interface (MPI) 

with MPI_Allgather() for CPU-to-CPU communications 

with various directions of parallelization in its three-dimensional 

(3-D) model. Second, we compare three parallelizing methods for 

communication among CPUs, namely MPI [2], multithread 

parallelization with OpenMP [3], and OpenMP/MPI hybrid 
parallelization.  

 

Figure 1: Simulation model of STO. 

2 CALCULATION MODEL AND 

MICROMAGNETIC SIMULATOR 

Fig. 1 illustrates the proposed simulation model for improving the 

performance. This shows the spin torque oscillator (STO), which 
is an element of the hard disk drive that makes it possible to 

achieve large recording capacity. In this case the STO contains 

three layers. When a magnetic field and a current are applied to 

the STO, the AC field generated from the STO is applied to the 
hard disk to assist with recording to the disk. The analysis field, 

including the STO and air, is divided into 2.5-nm rectangular 

prism cells. The number of cells in the X-, Y-, and Z-directions 

are 128, 128, and 14, respectively, which equates to 229,376 cells 
in total. This simulator uses C++ as the programming language 

and the differential equation as shown below is solved by Heun’s 

method. 
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The dynamic behavior of the magnetization is calculated 

using a modified Landau-Lifshitz-Gilbert (LLG) equation with a 

spin torque field, as shown in equation (1). 

(1 + 𝛼2)
𝑑�⃗⃗� 

𝑑𝑡
= −𝛾�⃗⃗� × (�⃗⃗� 𝑒𝑓𝑓 − 𝛼�⃗⃗� 𝑠𝑡) −

𝛾

𝑀𝑠
�⃗⃗� ×

{�⃗⃗� × (𝛼�⃗⃗� 𝑒𝑓𝑓 + �⃗⃗� 𝑠𝑡)}, 
(1) 

where M is the magnetization vector, t is the time, γ is the gyro 

magnetic constant, α is the damping constant, Ms is the saturation 
magnetization, and Heff is the effective field vector. Heff is 

composed of the static, anisotropy, external, and exchange 

magnetic fields. Hst is the spin-torque field applied to the STO via 

an electron spin. The calculation of the static magnetic field is 
quite time consuming. The static magnetic field is expressed as 

follows:  

[

𝐻𝑥

𝐻𝑦

𝐻𝑧

] = ∑ [
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𝑆𝑧𝑥 𝑆𝑧𝑦 𝑆𝑧𝑧

]𝑐𝑒𝑙𝑙 ∙ [

𝑀𝑥

𝑀𝑦

𝑀𝑧

], (2) 

where 𝐻𝑎(𝑎:𝑥, 𝑦, 𝑧) is the static magnetic field, 𝑆𝑎𝑏 (𝑏:𝑥, 𝑦, 𝑧) is a 
structure factor depending on the shape of the cell and the cell-to-

cell distance, and 𝑀𝑎  is the magnetization. Thus, the static 

magnetic field is the sum of the static magnetic fields of all 𝑁 

cells including itself. Therefore, the required calculation time of 
the static magnetic fields at every time step is proportional to N2, 

i.e., O(  𝑁2 ). This calculation time can be decreased to O(𝑁 ∙
log𝑁) time, as shown in equation (3), by applying a fast Fourier 

transform (FFT). 

𝐻(𝑘) = 𝑆(𝑘) ∙ 𝑀(𝑘), (3) 

where 𝐻(𝑘)，𝑆(𝑘)，𝑀(𝑘), and k are the static magnetic field, 

the structure factor, the magnetization, and the frequency, 

respectively. About 90% of the calculation time is occupied by the 

time required to calculate the static magnetic field as shown Fig. 2. 
Thus, decreasing this time is an important consideration.  

Table 1 shows the specifications of a node in the supercomputer 

FX10. The number of available nodes is 12. The maximum 

number of processes in one node is 16. As a result, the number of 
available processes is 192. The maximum number of threads is 

also 16. Therefore, the product of the number of threads and the 

processes must be equal to or lower than 192. 

Figure 2: Breakdown of calculation time in LLG simulator. 

Table 1: Specification of one node in FX10. 

Processor 1.848 GHz,16core ×1 

Theoretical peak performance 236.5 Gigaflops 

Memory capacity 32 GB 

3  PARALLELIZING METHODS 

MPI was utilized by dividing the iterative processes and by 

inserting the codes for communication. This was achieved as 
follows. First, the number of CPUs and the rank are obtained by 

using an MPI API. Second, the iterative processes are equally 

divided into groups and each group is assigned to a process. Third, 

the calculation is performed in every process. Fourth, the 
calculation results of all the processes are integrated by the MPI 

communication function. In this work, we use 

MPI_Allreduce() and MPI_Allgather() as 

communication functions． 

The second parallelization method we used was OpenMP, 

which is easier to use in practice because it only requires 

directives starting with #pragma to be inserted to affect the 

parallelization. Iterative processes are divided equally by inserting 

the directive of #omp parallel for 

schedule(static) private()before the for code of a 

loop. 
Finally, we also investigated the use of hybrid parallelization, 

which is a method that utilizes both MPI and OpenMP.  

The micromagnetic simulator has two triple for loops, which 

are used for the FFTs of the static magnetic fields or the 

magnetization. Two of the loops in the FFT are in the X- and Y-

directions, respectively. The triple loops contain loops in the X-, 

Y-, and Z-directions, and these can be parallelized. Furthermore, 
when the subscript of the 3-D array is [i][j][k], the elements of [i], 

[j], and [k] are termed the first, second and third elements, 

respectively.  

4 PERFORMANCE EVALUATION AND 

DISCUSSIONS 

4.1 Parallelization of MPI with 
MPI_Allgather() 
We discuss the relationship between the number of processes and 

the calculation time in MPI_Allgather(). The relationship is 

shown in Fig. 3. Comparing the parallelization of the for loop in 

the Z-direction and those in the X-and Y-directions, we can see 

that the parallelization in the Z-direction is faster than those in the 

latter two directions. This simulator applies two-dimensional FFT. 

The Fourier transforms in the X- and Y-directions are sequentially 
performed. However, if the data in the direction of the FFT in the 

triple loop were parallelized, the calculation result would be 

incorrect. Therefore, in the case of the FFT in the X-direction, the 

data in the Y-direction should be parallelized and integrated by 

MPI_Allgather(). The FFT in the Y-direction is achieved by 

the same method. On the other hand, in terms of parallelization in 

the Z-direction, it is unnecessary to perform 

MPI_Allgather() after the FFT in the X-direction, hence the 

communication time is shortened. As a result, parallelization in 

the Z-direction is faster than in the X- and Y-directions.  

Static magnetic field
91%

Magnetization
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Moreover, parallelization in the X-and Y-directions means 

that the second and third elements of the 3-D array [Z][Y][Z] are 

paralellized. When non-first elements are parallelized and 

integrated by MPI_Allgather(), the integrated data are 

transposed as shown in Fig. 4. Therefore, it is necessary to re-

order the integrated data after MPI_Allgather(). In this study, 

we temporarily store the integrated data in another data array, and 

then copy the data to the original data array with re-ordering. 

These procedures should be omitted to reduce the time 

consumption.  
For that purpose, it is needed to parallelize the first element of 

the 3-D array. Then, the data are integrated in the appropriate 

order by MPI_Allgather(). For example, the elements should 

be re-arranged in the order of [Y][Z][X] by transposing the array 

when the FFT is performed in the X-direction. Fig. 5 compares 

the conventional and proposed methods by providing a breakdown 

of the execution time for the 16 processes. This result indicates 

that the improved method is 20% faster than the conventional one 

because of the reduction in the number of times the data needs to 

be re-ordered.  

 

4.2 Comparison of parallelizing methods 
In this section, we compare the parallelizing methods. First, we 

compare MPI_Allreduce() and MPI_Allgather()for 

MPI. As shown in Fig. 6, MPI_Allgather() outperformed 

MPI_Allreduce(). This is mainly because the amount of 

transmitted data of MPI_Allgather() are less than those of 

MPI_Allreduce(). The maximum speed of the parallelization 

in the Z- direction with MPI_Allgather() is approximately 

11.8 times higher compared to the speed with one processor. 
Next, we focus on hybrid parallelization. Fig. 7 shows the 

relationship between the calculation time and the number of 

threads and processes when using hybrid parallelization. The 

results show that the performance was improved by 20.9 times 
and 22.0 times at most with 7 and 14 processes, respectively. 

Comparing the results in Figs. 6 and 7, we can see that the hybrid 

method achieved higher performance. 

The above results enable us to conclude that hybrid 
parallelization is more suitable than parallelization with only MPI 

for the LLG simulator. In addition, we can also conclude that 

MPI_Allgather() is more effective than 

MPI_Allreduce().  

 

Figure 3: Relationship between number of processes and 

calculation time in MPI_Allgather(). 

 

Figure 4: Schematic of data array for MPI parallelization in 

the X- and Y-directions using MPI_Allgather(). 

 

Figure 5: Comparison between conventional and improved 

methods in breakdown of execution time for 

MPI_Allgather(). 

 

Figure 6: Relationship between number of processes and 

calculation time using MPI. 
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Figure 7: Relationship between number of threads and 

calculation time using hybrid parallelization. 

5 CONCLUSIONS 

In this study, we investigated several parallelizing methods using 

the supercomputer FX10 at the University of Tokyo. In the case of 

parallelization of MPI with MPI_Allgather(), the 

parallelization in the Z-direction is faster than those in the X- and 

Y-directions, because using MPI_Allgather() after the 

parallelization in the X-direction can be omitted. In addition, the 
calculation time can be decreased by parallelizing the first 

element of the data array. Our evaluation demonstrated that the 

calculation time can be reduced by applying hybrid parallelization 

using MPI with MPI_Allgather()  in the Z-direction 

(without FFT) and OpenMP in the X- and Y-directions (with  FFT 

for the static magnetic field and magnetization).  
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