
Performance Improvement of Calculation of Static Magnetic Field of

Micromagnetic Simulator Using Supercomputer FX10

Masahiro Arai

Department of Electrical Engineering and Electronics

Kogakuin University

Tokyo, 163-8677
Japan

cm17003@ns.kogakuin.ac.jp

Fumiko Akagi
Department of Applied Physics

Kogakuin University

Tokyo, 163-8677
Japan

fumiko.akagi@ns.kogakuin.ac.jp

Saneyasu Yamaguchi
Department of Information and Communications Engineering

Kogakuin University

Tokyo, 163-8677

Japan

sane@ns.kogakuin.ac.jp

Kazuetsu Yoshida
Kogakuin University

Tokyo, 163-8677

Japan

kyoshida@polka.plala.or.jp

ABSTRACT

A micromagnetic simulator is widely used for analyzing the

dynamic behavior of magnetization. However, it is inefficient in

terms of time consumption. In this paper, we investigated several

methods for increasing the performance of the simulator using the

supercomputer FX10. We show that parallelizing the first element

of a data array makes it possible to speed up the calculation time

for MPI_Allgather(). We also demonstrate that hybrid

parallelization of the message passing interface (MPI) with

MPI_Allgather() and OpenMP is effective.

CCS CONCEPTS
• Computer systems organization~Embedded

systems • Software and its engineering~Parallel programming
languages • Software and its engineering~Software notations

and tools

KEYWORDS
Micromagnetic simulator, Fast Fourier transform (FFT), message

passing interface (MPI), OpenMP, Hybrid MPI, and OpenMP
parallelization

ACM Reference format:

M. Arai, F. Akagi, S. Yamaguchi, and K. Yoshida, 2017. SIG

Proceedings Paper in Word Format. In HPC Asia 2018, Chiyoda,

Tokyo, Japan, January 2018, 4 pages.

1 INTRODUCTION

A micromagnetic simulator is used for analyzing the dynamic

behavior of magnetization, which shows the strength and the
magnetization direction of a magnet, and is commonly used for

designing various magnetic products including hard disk drives

[1]. However, the calculation of static magnetic fields among a

huge number of small nanosized cells, into which the simulation
model discretizes the simulated field, is time consuming.

In this work, we used the supercomputer FX10 at the

University of Tokyo to investigate the possibility of using

parallelizing methods to decrease the calculation time. First, we

present a parallelization of the message passing interface (MPI)

with MPI_Allgather() for CPU-to-CPU communications

with various directions of parallelization in its three-dimensional

(3-D) model. Second, we compare three parallelizing methods for

communication among CPUs, namely MPI [2], multithread

parallelization with OpenMP [3], and OpenMP/MPI hybrid
parallelization.

Figure 1: Simulation model of STO.

2 CALCULATION MODEL AND

MICROMAGNETIC SIMULATOR

Fig. 1 illustrates the proposed simulation model for improving the

performance. This shows the spin torque oscillator (STO), which
is an element of the hard disk drive that makes it possible to

achieve large recording capacity. In this case the STO contains

three layers. When a magnetic field and a current are applied to

the STO, the AC field generated from the STO is applied to the
hard disk to assist with recording to the disk. The analysis field,

including the STO and air, is divided into 2.5-nm rectangular

prism cells. The number of cells in the X-, Y-, and Z-directions

are 128, 128, and 14, respectively, which equates to 229,376 cells
in total. This simulator uses C++ as the programming language

and the differential equation as shown below is solved by Heun’s

method.

128

𝑧

𝑦
𝑥

12
8

14

3 1 1 1 4

12

12

January 2018, Japan, Tokyo, Chiyoda, HPC Asia 2018 M. Arai et al.

2

The dynamic behavior of the magnetization is calculated

using a modified Landau-Lifshitz-Gilbert (LLG) equation with a

spin torque field, as shown in equation (1).

(1 + 𝛼2)
𝑑�⃗⃗�

𝑑𝑡
= −𝛾�⃗⃗� × (�⃗⃗� 𝑒𝑓𝑓 − 𝛼�⃗⃗� 𝑠𝑡) −

𝛾

𝑀𝑠
�⃗⃗� ×

{�⃗⃗� × (𝛼�⃗⃗� 𝑒𝑓𝑓 + �⃗⃗� 𝑠𝑡)},
(1)

where M is the magnetization vector, t is the time, γ is the gyro

magnetic constant, α is the damping constant, Ms is the saturation
magnetization, and Heff is the effective field vector. Heff is

composed of the static, anisotropy, external, and exchange

magnetic fields. Hst is the spin-torque field applied to the STO via

an electron spin. The calculation of the static magnetic field is
quite time consuming. The static magnetic field is expressed as

follows:

[

𝐻𝑥

𝐻𝑦

𝐻𝑧

] = ∑ [

𝑆𝑥𝑥 𝑆𝑥𝑦 𝑆𝑥𝑧

𝑆𝑦𝑥 𝑆𝑦𝑦 𝑆𝑦𝑧

𝑆𝑧𝑥 𝑆𝑧𝑦 𝑆𝑧𝑧

]𝑐𝑒𝑙𝑙 ∙ [

𝑀𝑥

𝑀𝑦

𝑀𝑧

], (2)

where 𝐻𝑎(𝑎:𝑥, 𝑦, 𝑧) is the static magnetic field, 𝑆𝑎𝑏 (𝑏:𝑥, 𝑦, 𝑧) is a
structure factor depending on the shape of the cell and the cell-to-

cell distance, and 𝑀𝑎 is the magnetization. Thus, the static

magnetic field is the sum of the static magnetic fields of all 𝑁

cells including itself. Therefore, the required calculation time of
the static magnetic fields at every time step is proportional to N2,

i.e., O(𝑁2). This calculation time can be decreased to O(𝑁 ∙
log𝑁) time, as shown in equation (3), by applying a fast Fourier

transform (FFT).

𝐻(𝑘) = 𝑆(𝑘) ∙ 𝑀(𝑘), (3)

where 𝐻(𝑘)，𝑆(𝑘)，𝑀(𝑘), and k are the static magnetic field,

the structure factor, the magnetization, and the frequency,

respectively. About 90% of the calculation time is occupied by the

time required to calculate the static magnetic field as shown Fig. 2.
Thus, decreasing this time is an important consideration.

Table 1 shows the specifications of a node in the supercomputer

FX10. The number of available nodes is 12. The maximum

number of processes in one node is 16. As a result, the number of
available processes is 192. The maximum number of threads is

also 16. Therefore, the product of the number of threads and the

processes must be equal to or lower than 192.

Figure 2: Breakdown of calculation time in LLG simulator.

Table 1: Specification of one node in FX10.

Processor 1.848 GHz,16core ×1

Theoretical peak performance 236.5 Gigaflops

Memory capacity 32 GB

3 PARALLELIZING METHODS

MPI was utilized by dividing the iterative processes and by

inserting the codes for communication. This was achieved as
follows. First, the number of CPUs and the rank are obtained by

using an MPI API. Second, the iterative processes are equally

divided into groups and each group is assigned to a process. Third,

the calculation is performed in every process. Fourth, the
calculation results of all the processes are integrated by the MPI

communication function. In this work, we use

MPI_Allreduce() and MPI_Allgather() as

communication functions．

The second parallelization method we used was OpenMP,

which is easier to use in practice because it only requires

directives starting with #pragma to be inserted to affect the

parallelization. Iterative processes are divided equally by inserting

the directive of #omp parallel for

schedule(static) private()before the for code of a

loop.
Finally, we also investigated the use of hybrid parallelization,

which is a method that utilizes both MPI and OpenMP.

The micromagnetic simulator has two triple for loops, which

are used for the FFTs of the static magnetic fields or the

magnetization. Two of the loops in the FFT are in the X- and Y-

directions, respectively. The triple loops contain loops in the X-,

Y-, and Z-directions, and these can be parallelized. Furthermore,
when the subscript of the 3-D array is [i][j][k], the elements of [i],

[j], and [k] are termed the first, second and third elements,

respectively.

4 PERFORMANCE EVALUATION AND

DISCUSSIONS

4.1 Parallelization of MPI with
MPI_Allgather()
We discuss the relationship between the number of processes and

the calculation time in MPI_Allgather(). The relationship is

shown in Fig. 3. Comparing the parallelization of the for loop in

the Z-direction and those in the X-and Y-directions, we can see

that the parallelization in the Z-direction is faster than those in the

latter two directions. This simulator applies two-dimensional FFT.

The Fourier transforms in the X- and Y-directions are sequentially
performed. However, if the data in the direction of the FFT in the

triple loop were parallelized, the calculation result would be

incorrect. Therefore, in the case of the FFT in the X-direction, the

data in the Y-direction should be parallelized and integrated by

MPI_Allgather(). The FFT in the Y-direction is achieved by

the same method. On the other hand, in terms of parallelization in

the Z-direction, it is unnecessary to perform

MPI_Allgather() after the FFT in the X-direction, hence the

communication time is shortened. As a result, parallelization in

the Z-direction is faster than in the X- and Y-directions.

Static magnetic field
91%

Magnetization
6%

Other
3%

 January 2018, Japan, Tokyo, Chiyoda, HPC Asia 2018

 3

Moreover, parallelization in the X-and Y-directions means

that the second and third elements of the 3-D array [Z][Y][Z] are

paralellized. When non-first elements are parallelized and

integrated by MPI_Allgather(), the integrated data are

transposed as shown in Fig. 4. Therefore, it is necessary to re-

order the integrated data after MPI_Allgather(). In this study,

we temporarily store the integrated data in another data array, and

then copy the data to the original data array with re-ordering.

These procedures should be omitted to reduce the time

consumption.
For that purpose, it is needed to parallelize the first element of

the 3-D array. Then, the data are integrated in the appropriate

order by MPI_Allgather(). For example, the elements should

be re-arranged in the order of [Y][Z][X] by transposing the array

when the FFT is performed in the X-direction. Fig. 5 compares

the conventional and proposed methods by providing a breakdown

of the execution time for the 16 processes. This result indicates

that the improved method is 20% faster than the conventional one

because of the reduction in the number of times the data needs to

be re-ordered.

4.2 Comparison of parallelizing methods
In this section, we compare the parallelizing methods. First, we

compare MPI_Allreduce() and MPI_Allgather()for

MPI. As shown in Fig. 6, MPI_Allgather() outperformed

MPI_Allreduce(). This is mainly because the amount of

transmitted data of MPI_Allgather() are less than those of

MPI_Allreduce(). The maximum speed of the parallelization

in the Z- direction with MPI_Allgather() is approximately

11.8 times higher compared to the speed with one processor.
Next, we focus on hybrid parallelization. Fig. 7 shows the

relationship between the calculation time and the number of

threads and processes when using hybrid parallelization. The

results show that the performance was improved by 20.9 times
and 22.0 times at most with 7 and 14 processes, respectively.

Comparing the results in Figs. 6 and 7, we can see that the hybrid

method achieved higher performance.

The above results enable us to conclude that hybrid
parallelization is more suitable than parallelization with only MPI

for the LLG simulator. In addition, we can also conclude that

MPI_Allgather() is more effective than

MPI_Allreduce().

Figure 3: Relationship between number of processes and

calculation time in MPI_Allgather().

Figure 4: Schematic of data array for MPI parallelization in

the X- and Y-directions using MPI_Allgather().

Figure 5: Comparison between conventional and improved

methods in breakdown of execution time for

MPI_Allgather().

Figure 6: Relationship between number of processes and

calculation time using MPI.

0

20

40

60

80

100

1 2 4 7 8 14 16

R
er

at
iv

e
ca

lc
u

la
ti

o
n

ti
m

e
[%

]

Number of threads or processes

MPI_Allgather(X and Y direction)

MPI_Allgather(Z direction)

0

20

40

60

80

100

Conventional
(16processes)

Improvement
(16processes)

Ex
ec

u
ti

o
n

 t
im

e
[%

]

Parallelization part Communication Re-order Other

0

20

40

60

80

100

1 2 4 7 8 14 16

R
er

at
iv

e
ca

lc
u

la
ti

o
n

ti
m

e
[%

]

Number of threads or processes

MPI_Allreduce(X and Y direction)

MPI_Allreduce(Z direction)

MPI_Allgather(X and Y direction)

MPI_Allgather(Z direction)

January 2018, Japan, Tokyo, Chiyoda, HPC Asia 2018 M. Arai et al.

4

Figure 7: Relationship between number of threads and

calculation time using hybrid parallelization.

5 CONCLUSIONS

In this study, we investigated several parallelizing methods using

the supercomputer FX10 at the University of Tokyo. In the case of

parallelization of MPI with MPI_Allgather(), the

parallelization in the Z-direction is faster than those in the X- and

Y-directions, because using MPI_Allgather() after the

parallelization in the X-direction can be omitted. In addition, the
calculation time can be decreased by parallelizing the first

element of the data array. Our evaluation demonstrated that the

calculation time can be reduced by applying hybrid parallelization

using MPI with MPI_Allgather() in the Z-direction

(without FFT) and OpenMP in the X- and Y-directions (with FFT

for the static magnetic field and magnetization).

ACKNOWLEDGMENTS

This study was supported in part by the Storage Research

Consortium Japan. This work was supported by JST CREST

Grant Number JPMJCR1503, Japan. This work was supported by

JSPS KAKENHI Grant Numbers 26730040, 15H02696,

17K00109.

REFERENCES
[1] Y. Tang, and J. G Zhu, IEEE Trans. Magn. 44, 11 (2008) 3376-3379 (2008).

[2] P. Pacheco, H. Akiba. 2001. Parallel Programming with MPI (in Japanese),

Baifukan, Tokyo, 43-56.

[3] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, R. Menon.

2001. Parallel Programming in OpenMP, Morgan Kaufmann.

0

3

6

9

12

15

1 2 4 7 8 14 16

R
er

at
iv

e
ca

lc
u

la
ti

o
n

ti

m
e

[%
]

Number of threads or processes

Hybrid(7processes)

Hybrid(14processes)

