
Using Gaming GPUs for Deep Learning
Extended Abstract

Gangwon Jo
ManyCoreSoft Co., Ltd.

Seoul, Korea
gangwon@manycoresoft.co.kr

Jungho Park
ManyCoreSoft Co., Ltd.

Seoul, Korea
jungho@manycoresoft.co.kr

Jaejin Lee
Dept. of Computer Science and

Engineering
Seoul National University

Seoul, Korea
jaejin@snu.ac.kr

ABSTRACT

We propose two techniques to use cost-effective gaming GPUs
as accelerators for deep learning, instead of expensive HPC-
dedicated GPUs. A closed-circuit direct water cooling system
keeps gaming GPUs at a low temperature. It ensures the long
lifetime and reliability of gaming GPUs, rids the GPUs of
memory errors, and reduces cooling fan noise. A VMDNN (vir-
tual GPU memory for deep neural networks) library virtually
expands the GPU memory space during the training period
of a deep neural network model, by automatically swapping
out unnecessary GPU memory object to the main memory.
We present a gaming-GPU-based deep learning system that
adopts these two techniques. The experimental result shows
that the proposed system achieves 2–2.5x cost effectiveness
compared to a system containing HPC-dedicated, high-end
GPUs.

CCS CONCEPTS

• Computer systems organization → Heterogeneous
(hybrid) systems; • Hardware → Temperature optimiza-
tion; • Software and its engineering → Virtual memory ;
• Computing methodologies → Neural networks;

KEYWORDS

Deep learning, gaming GPUs, memory management, virtual
memory, water cooling

ACM Reference Format:

Gangwon Jo, Jungho Park, and Jaejin Lee. 2018. Using Gaming
GPUs for Deep Learning: Extended Abstract. In Proceedings of

International Conference on High Performance Computing in

This work was supported by National Research Foundation of Korea
grants funded by the Ministry of Science and ICT and the Ministry
of Education: PF Class Heterogeneous High Performance Computer
Development (No. 2016M3C4A7952587), Center for Manycore Pro-
gramming (No. 2013R1A3A2003664), and BK21 Plus for Pioneers
in Innovative Computing (No. 21A20151113068, Dept. of Computer
Science and Engineering, SNU). ICT at Seoul National University
provided research facilities for this study.

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

HPC Asia 2018, January 2018, Tokyo, Japan

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Table 1: Memory size of the state-of-the-art GPUs.

Category GPU Memory Size

Gaming NVIDIA GeForce GTX 1080 8 GB

GPUs NVIDIA GeForce GTX 1080 Ti 11 GB
NVIDIA GeForce GTX Titan Xp 12 GB

HPC-dedicated NVIDIA Tesla P100 12–16 GB

GPUs NVIDIA Tesla P40 24 GB

Asia-Pacific Region (HPC Asia 2018). ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Deep learning is now one of the important applications of
high-performance computing (HPC) systems. Especially, the
massively parallel processing capability of the state-of-the-art
GPUs makes deep neural networks (DNNs) to be trained in
a reasonable time period and to be practically used in many
areas. Unlike traditional HPC applications coming from com-
putational science, training a DNN does not require double-
precision floating-point operations. Thus, it can achieve good
performance not only on expensive HPC-dedicated GPUs
(e.g., NVIDIA Tesla GPUs) but also on inexpensive gaming
GPUs (e.g., NVIDIA GeForce GPUs) that contain only a few
double-precision units. For example, a popular DNN model
called VGGNet [4] was originally trained on four NVIDIA
GeForce GTX Titan Black gaming GPUs. Caffe [3] and Ten-
sorFlow [2] are two of the widely-used deep learning frame-
works, and they were evaluated on an NVIDIA GeForce GTX
1080 gaming GPU and an NVIDIA GeForce GTX Titan X
gaming GPU, respectively, at the time of their publication.

Although gaming GPUs performs comparably to or bet-
ter than HPC-dedicated GPUs in terms of single-precision
FLOPS, they also have some limitations for use in HPC
systems and deep learning. First, gaming GPUs and their
coolers are not designed for high-density systems. When mul-
tiple gaming GPUs are installed in a single system, it is hard
to remove the large amount of heat from the GPUs. This
may cause erroneous computations because gaming GPUs
do not have ECC memory. This also shortens the lifetime of
the GPUs. Moreover, such a system requires fast but very
noisy cooling fans. Note that multi-GPU systems are very
common in deep learning.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

HPC Asia 2018, January 2018, Tokyo, Japan Gangwon Jo, Jungho Park, and Jaejin Lee

Cold water Hot water Quick disconnect coupling

……

Radiators Pump

M
a

n
if
o

ld

Cold Plate

Cold Plate

Cold Plate

Cold Plate

M
a

n
if
o

ld

Figure 1: The structure of the direct water cooling
system.

Second, gaming GPUs have less memory than HPC-dedicated
GPUs as shown in Table 1. On the other hand, since DNNs
are becoming deeper and wider, a larger GPU memory capac-
ity is strongly required. For example, training the VGG-16
network [4] with a batch size of 64 (i.e., updating network
parameters after feeding 64 input data to the network) re-
quires about 10 GB of GPU memory. Thus, VGG-16 can be
trained on an NVIDIA Tesla P100 HPC-dedicated GPU, but
not on an NVIDIA GeForce GTX 1080 gaming GPU.

In this poster, we propose two techniques to overcome
aforementioned problems and to use cost-effective gaming
GPUs as accelerators for deep learning. A closed-circuit direct
water cooling system keeps gaming GPUs at a low tempera-
ture and ensures their reliability. A VMDNN (virtual GPU
memory for deep neural networks) library virtually expands
the GPU memory space on demand during the training period
of a deep neural network. Finally, we present DEEP Gadget,
a gaming-GPU-based HPC system for deep learning that
adopts these techniques. It achieves 2–2.5x cost effectiveness
with seven gaming GPUs compared to a system containing
four HPC-dedicated GPUs.

2 WATER COOLING

In these days, liquid cooling has been emerged as a promising
cooling solution for high-density HPC systems and datacen-
ters. Direct liquid cooling (also known as direct contact liquid
cooling or direct-to-chip liquid cooling, but different from
immersion cooling) is one of the major liquid cooling methods.
It directly attaches a cold plate to a server component (e.g.,
a GPU) and brings liquid into the plate. It usually uses water
(chilled water or warm water) as coolant because water has
a high thermal conductivity and is suitable for absorbing the
heat through a limited liquid-contacting area within a small
and thin cold plate.

Especially, liquid cooling is essential for gaming GPUs
because it can provide much higher cooling performance than
conventional air cooling. It ensures the long lifetime and
reliability of gaming GPUs as with HPC-dedicated GPUs. It
rids the GPUs of memory errors caused by high temperature.
In addition, it significantly reduces cooling fan noise and
makes a multi-GPU server work quietly even at full load.

Figure 2: A commodity motherboard that provides
seven PCIe x16 slots.

Figure 3: Seven water-cooled gaming GPUs installed
on the motherboard in Figure 2.

Figure 1 shows the structure of the proposed direct wa-
ter cooling system that can be used for gaming-GPU-based
servers. A cold plate is attached to every GPU and (option-
ally) every CPU. All water cooling components including
a pump, manifolds, cold plates, and radiators are installed
in a server chassis and form a closed loop. Non-spill quick
disconnect couplings help every component to be easily dis-
connected from the remaining system and replaced with a
new one.

We have designed GPU cold plates that are much thinner
than the previous ones available in the market. This makes
a high-end gaming GPU to fit into a single PCIe slot, while
the existing air-cooling and water-cooling products require
a dual-slot space for a single GPU. Some of the commodity
motherboards provide seven PCIe x16 slots as shown in
Figure 2. Up to seven water-cooled gaming GPUs can be
installed on such a motherboard as shown in Figure 3.

3 VMDNN: VIRTUAL GPU MEMORY
FOR DEEP NEURAL NETWORKS

To overcome the limitation of GPU memory capacity, we
propose a pure software-based solution called VMDNN (vir-
tual GPU memory for DNNs). It implements a GPU memory
swapping mechanism similar to the paging mechanism of
conventional operating systems.

When a deep learning framework such as Caffe and Tensor-
Flow is running on a GPU, it allocates many GPU memory

Using Gaming GPUs for Deep Learning HPC Asia 2018, January 2018, Tokyo, Japan

objects to store all the parameters of a DNN model, such as
input data, feature maps, weights, and gradients. Then, it
runs various CUDA kernels on the GPU one by one. However,
each kernel does not access all the GPU memory objects. It
usually accesses only the memory objects related to a single
layer of the neural network. VMDNN automatically swaps
out some of the unnecessary GPU memory objects to the
main memory for the current kernel. It also swaps in the
GPU memory objects from the main memory for the next
kernel. In addition, if the total size of GPU memory objects
accessed by a single kernel is bigger than the GPU memory
size, VMDNN divides the GPU memory objects into smaller
pieces and executes the kernel multiple times with each piece
at a time. This is possible because CUDA kernels executed
during the training period usually process tens or hundreds
of independent input data at the same time.

VMDNN minimizes the swapping overhead based on an
observation that the deep learning framework repeats a set of
CUDA kernel calls millions of times in a fixed order during the
training period of a DNN model. GPU memory objects are
allocated before the training period and reused whenever the
CUDA kernels are executed again. VMDNN automatically
detects a GPU memory-object access pattern that is repeated
multiple times, and measures the execution time and the
memory object usage of each kernel. Then, VMDNN generates
an optimal swapping schedule to maximally hide memory
transfers (swap-outs and swap-ins) with GPU computations.

VMDNN is implemented as a shared library and transpar-
ent to the target deep learning framework. We do not need
to modify or recompile the source code of the deep learning
framework. The shared library is executed with the frame-
work by setting the environment variable LD PRELOAD. It
intercepts all CUDA kernel calls from the framework and
performs the memory management. As a result, VMDNN
is compatible with different versions of deep learning frame-
works and backend libraries such as cuDNN [1]. In addition,
VMDNN is available for users who download a deep learning
framework as binary with a package manager or a Docker
image.

4 DEEP GADGET

DEEP Gadget is a gaming-GPU-based HPC system for deep
learning that adopts two techniques in Section 2 and 3.
Table 2 shows an example of the system configuration. It
contains two Intel Xeon E5-2630 v4 CPUs, seven NVIDIA
GeForce GTX 1080 Ti gaming GPUs, and 256 GB main
memory. Water cooling keeps the temperature of the GPUs
about 70°C at full load. The VGG-16 network with a batch
size of 512 requires about 60 GB of GPU memory, but this
can be trained on a single GPU with the help of the VMDNN
library. Note that the proposed techniques of this poster are
not restricted to any specific model of CPUs or GPUs.

5 EVALUATION

We compare the performance of the DEEP Gadget system
in Table 2 with a system containg four NVIDIA Tesla P100

Table 2: A possible configuration of the DEEP Gad-
get system.

Component Specification

CPU 2x Intel Xeon E5-2630 v4 (water-cooled)

GPU 7x NVIDIA GeForce GTX 1080 Ti (water-cooled)

Main memory 128 GB DDR4 2,400 MHz
Motherboard ASUS Z10PE-D8 WS

(PCIe slots) 2x PCIe 3.0 @ x16, 5x PCIe 3.0 @ x8

Storage 250 GB M.2 NVMe SSD +
32 TB RAID 6 HDD storage

(6x 8 TB SATA3 HDD)

Power supply 2x 1,300 W
OS Ubuntu 16.04 LTS

Software CUDA Toolkit 9.0, cuBLAS 9.0, cuDNN 6.0,

NCCL, VMDNN library

Table 3: The specification of the 4x P100 system.

Component Specification

CPU 2x Intel Xeon E5-2683 v4

GPU 4x NVIDIA Tesla P100 SXM2

Main memory 512 GB DDR4 2,133 MHz
OS CentOS 7.2

Software CUDA Toolkit 8.0, cuBLAS 8.0, cuDNN 6.0,

NCCL

0

50

100

150

200

250

300

350

400

VGG-16 Inception-v4

0

50

100

150

200

250

300

350

400

VGG-16 Inception-v4

(a) Performance (b) Cost Effectiveness

(Performance Per $25,000)

#
 o

f
T
ra

in
e
d

 I
m

a
g

e
s

P
e
r

S
e
c
o

n
d

4x P100 GPUs DEEP Gadget w/ 7x 1080 Ti GPUs

Figure 4: The training performance and the cost ef-
fectiveness (i.e., performance per $25,000) of the 4x
P100 system and the DEEP Gadget system with 7x
1080 Ti GPUs.

HPC-dedicated GPUs. Table 3 describes the specification
of the 4x P100 system. We train two popular DNN models,
VGG-16 [4] and Inception-v4 [5], using Caffe [3] and measure
the number of trained images per second. We use the same
version of cuDNN in two systems because it largely affects
the training performance.

Figure 4 shows the result. The performance of the DEEP
Gadget system is slightly better than that of the 4x P100
system for both VGG-16 and Inception-v4 as shown in Fig-
ure 4 (a). However, the price of the DEEP Gadget system
($25,000) is much lower than that of the 4x P100 system

HPC Asia 2018, January 2018, Tokyo, Japan Gangwon Jo, Jungho Park, and Jaejin Lee

($50,000). Thus, the DEEP Gadget system achieves 2x and
2.5x cost effectiveness for VGG-16 and Inception-v4, respec-
tively as shown in Figure 4 (b). This result shows that the
DEEP Gadget system is appropriate and beneficial for deep
learning research.

REFERENCES
[1] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan

Cohen, John Tran, Bryan Catanzaro, and Evan Shelhamer.
2014. cuDNN: Efficient Primitives for Deep Learning. (2014).
arXiv:1410.0759

[2] Martin Abadi et al. 2016. TensorFlow: A system for large-scale
machine learning. In Proceedings of the 12th USENIX Symposium
on Operating Systems Design and Implementation. 265–283.

[3] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev,
Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor
Darrell. 2014. Caffe: Convolutional Architecture for Fast Feature
Embedding. (2014). arXiv:1408.5093

[4] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Con-
volutional Networks for Large-Scale Image Recognition. (2014).
arXiv:1409.1556

[5] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. 2016.
Inception-v4, Inception-ResNet and the Impact of Residual Con-
nections on Learning. (2016). arXiv:1602.07261

http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1408.5093
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1602.07261

	Abstract
	1 Introduction
	2 Water Cooling
	3 VMDNN: Virtual GPU Memory for Deep Neural Networks
	4 DEEP Gadget
	5 Evaluation
	References

