
Optimization of x265 encoder using ARM SVE
AOKI Ryosuke

ryosuke-aoki@uec.ac.jp
The University of Electro-Communications

Tokyo, Japan

MURAO Hirokazu (Advisor)
murao@cs.uec.ac.jp

The University of Electro-Communications
Tokyo, Japan

ABSTRACT
We optimized several heavily used functions in x265, an open source
implementation of H.265/HEVC, using SVE instructions. The result
showed that our implementation reduced the number of instruc-
tions executed up to 52% compared to the code generated by GCC
from the original C++ source code. The implementation also scales
better with the vector length than the original code.

In our poster, implementation details will be illustrated, and the
detailed result of benchmark for every function will be shown.

KEYWORDS
H.265/HEVC, Scalable Vector Extension, x265

1 INTRODUCTION
Scalable Vector Extension (SVE) [4] is a vector extension for ARMv8-
A, a 64bit CPU architecture developed by ARM Ltd. The most no-
table feature of SVE is its scalable vector registers. SVE does not
specify the exact length of these registers, but let the implementa-
tion choose the length, from 128 bits up to 2048 bits. SVE adopts
the vector-length agnostic (VLA) programming model, making it
possible to run programs on every SVE platform with different
vector length, without the need of recompiling. In this April, ARM
announced SVE2, a new extension based on SVE, which has new in-
struction to vectorize DSP and multimedia SIMD codes [3]. SVE and
its unique VLA programming model are expected to be deployed
in various fields, not limited to supercomputing.

H.265/HEVC is a video codec developed and standardized in 2013.
H.265/HEVC achieved higher compression efficiency compared to
its predecessor H.264/AVC, at the expense of significantly higher
computational cost.

2 OPTIMIZING X265 FOR SVE
x265 [2] is an open source implementation of H.265/HEVC encoder.
It is mostly written in C++, but several frequently used subrou-
tines, called “primitives”, are implemented in assembly. From our
profiling of x265 on an AArch64 machine, we found out 40% exe-
cuted instructions of the total encoding process came from only 10
functions. From these functions we chose computationally inten-
sive functions to optimize, namely for sum of absolute transformed
differences (SATD), interpolation, and DCT.

Our implementation is based on SVE’s VLA programming model,
and the performance is expected to scale with the vector lengths
equipped with platforms actually used. GCC doesn’t vectorize func-
tions mentioned above, so we reimplemented them in assembly
code. In our implementation of DCT32 (processes 32 × 32 16bit in-
terger data), 2 lines in the input data is processed using contiguous
128 bit part of SVE registers. As the SVE longer gets longer, the
more lines are processed in one iteration. For example on a 2048bit

SVE machine, DCT32 can be computed only one iteration. SATD
and interpolation functions are optimized in the simillar way.

3 EVALUATION
We executed and analyzed the encoder using Arm Instruction Em-
ulator (ArmIE) [1]. We used a short test clip to count the whole
numbers of instructions executed in encoding. The result (Figure 1)
shows that our implementation reduces up to 52% of instructions,
compared with the original version. Also we observed that the
number of executed instructions decrease as the vector gets longer.

 0
 2e+10
 4e+10
 6e+10
 8e+10
 1e+11

 1.2e+11
 1.4e+11
 1.6e+11
 1.8e+11

 2e+11

 128 256 512 1024 2048N
u
m

b
e
r

o
f

in
st

ru
ct

io
n
s

e
xe

cu
te

d

VL (bits)

Whole x265 encoding process

without SVE instructions
with optimized routines

Figure 1: Total number of instructions executed during test
clip encoding.

4 CONCLUSION
We optimized several heavily used functions in x265 using SVE in-
structions, and achieved the reduction of the number of instructions
executed. The executed instruction count also scales better with
vector length. Using instructions introduced in SVE2, like pairwise
operations, might reduce more instructions. Investigation of SVE2
and the comparison with our result are left for future study.

5 ACKNOWLEDGMENTS
We would like to thank Mitsuhisa Sato, Jinpil Lee, and other re-
searchers of RIKEN for accepting the author as an intern and giving
advice on writing and optimizing programs for SVE.

REFERENCES
[1] Arm Limited. [n. d.]. Arm Instruction Emulator | Analyzing SVE programs –

Arm Developer. https://developer.arm.com/tools-and-software/server-and-hpc/
arm-architecture-tools/arm-instruction-emulator/analyzing-sve-programs

[2] MulticoreWare Inc. [n. d.]. x265 HEVC Encoder / H.265 Video Codec. http:
//x265.org/

[3] N. Stephens. 2019. New Technologies in the Arm Architecture.
[4] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli, M. Horsnell, G.

Magklis, A. Martinez, N. Premillieu, A. Reid, A. Rico, and P. Walker. 2017. The
ARM Scalable Vector Extension. IEEE Micro 37, 2 (March 2017), 26–39. https:
//doi.org/10.1109/MM.2017.35

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-instruction-emulator/analyzing-sve-programs
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-instruction-emulator/analyzing-sve-programs
http://x265.org/
http://x265.org/
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1109/MM.2017.35

	Abstract
	1 Introduction
	2 Optimizing x265 for SVE
	3 Evaluation
	4 Conclusion
	5 Acknowledgments
	References

