
AMR Framework to Realize Effective High-Resolution
Simulations on Multiple GPUs

Takashi Shimokawabe
shimokawabe@cc.u-tokyo.ac.jp
Information Technology Center,

The University of Tokyo
Tokyo, Japan

Naoyuki Onodera
Center for Computational Science and e-Systems,

Japan Atomic Energy Agency
Chiba, Japan

Recently grid-based physical simulations with GPU require effec-
tive methods to adapt grid resolution to certain sensitive regions
of simulations. An adaptive mesh refinement (AMR) method is one
of the effective methods to compute certain local regions that de-
mand higher accuracy with higher resolution. To develop the ap-
plications adopting AMR effectively with maintaining high perfor-
mance on multiple GPUs, we are developing a block-based AMR
framework for stencil applications [3].

The proposed AMR framework is designed to provide highly-
productive programming environment for stencil applicationswith
adapting grid resolution to certain sensitive regions of simulations.
The proposed AMR framework is originally based on our existing
high-productivity framework for stencil applications on Cartesian
grid [1]. By extending this original framework and adding theAMR
data structure with halo exchange functions and mesh refinement
mechanisms, we construct this AMR framework. This framework
is intended to execute the user program on NVIDIA’s GPU and x86
CPU, which is implemented in CUDA and C++. The programmer
simply describes a C++11 lambda that updates a grid point, which
is applied to the entire grids with various resolution over a tree-
based AMR data structure effectively.

The framework can locally change the resolution of the grids
for arbitrary regions in the time integration loop of applications.
The entire computational domain is divided into a large number of
small uniform grid blocks. Since each grid block is a uniform grid,
the computation on these blocks can be solved with the conven-
tional stencil calculations. This strategy may be effective for per-
formance improvement because GPU can often derive high perfor-
mance when accessing contiguous memory. By using this frame-
work, the programmer just writes the stencil calculations for a uni-
form grid with a single resolution. The framework can apply this
user-written functions to a large number of grid blocks with var-
ious resolutions simultaneously. In addition, the framework pro-
vides someC++ classes to realize other processes required for AMR,
such as mesh refinement, exchanging data in halo regions between
grid blocks with different resolutions, and data migration to main-
tain load balance.

In halo exchange with multiple GPUs, in order to utilize the
simple memory access pattern with avoiding performance degra-
dation, the framework exploits the temporal blocking (TB) method
for locality improvement. The multiple time steps can be advanced
in each GPU independently of the others without communication
in the TB. By using the countdown-based TB proposed in our pre-
vious research [2], the framework can apply the TB to the user
code without changing the structure of time integration loop.

Figure 1: A snapshot of density distribution results obtained
by the simulation of 3D compressible flow. The boundary
lines of the grid blocks are also shown in part.

Figure 1 shows a snapshot of computational results of the Rayleigh-
Taylor instability obtained by 3D compressible flow computation
written by this AMR framework. By applying the AMR method to
fluid simulation, we have succeeded in simulatingwith a fine struc-
ture around the interface of two fluids. With our proposed frame-
work, we have conducted performance studies of the framework-
based compressible flow simulation on a single GPU and using
multiple GPUs on TSUBAME 3.0. The framework-based compress-
ible flow simulation has achieved to reduce the computational time
to less than 15% with 10% of memory footprint compared to the
equivalent computation running on the fine uniform grid. The good
weak scaling is obtained using 288 GPUs of TSUBAME 3.0 with the
efficiency reaching 84%.

REFERENCES
[1] Takashi Shimokawabe, Takayuki Aoki, and Naoyuki Onodera. 2014. High-

Productivity Framework on GPU-Rich Supercomputers for Operational
Weather Prediction Code ASUCA. In SC14: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE, 251–261.
https://doi.org/10.1109/SC.2014.26

[2] Takashi Shimokawabe, Toshio Endo, Naoyuki Onodera, and Takayuki Aoki.
2017. A Stencil Framework to Realize Large-Scale Computations Be-
yond Device Memory Capacity on GPU Supercomputers. In 2017 IEEE
International Conference on Cluster Computing (CLUSTER). IEEE, 525–529.
https://doi.org/10.1109/CLUSTER.2017.97

[3] Takashi Shimokawabe and Naoyuki Onodera. 2019. A High-Productivity Frame-
work for Adaptive Mesh Refinement on Multiple GPUs. In Computational Sci-
ence – ICCS 2019, João M F Rodrigues, Pedro J S Cardoso, Jânio Monteiro,
Roberto Lam, Valeria V Krzhizhanovskaya, Michael H Lees, Jack J Dongarra,
and Peter M A Sloot (Eds.). Springer International Publishing, Cham, 281–294.
https://doi.org/10.1007/978-3-030-22734-0_21


