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Recently, CAD (Computer-Assisted Detection) that identifies the
position of a lesion by analyzing a CT or MRI images has been
introduced in the medical field. Moreover, CNN (Convolutional
Neural Networks) has been studied for medical image segmenta-
tion by learning, and the accuracy of CAD has been drastically
improved. On the other hand, training by a GPU time takes a long
time andmini batch size is too small due to complicated neural net-
work model. In this study, we aimed to improve the performance
of training by large amount of GPUs with good accuracy for the
segmentation task of using U-Net model.

U-NET MODEL
As a CNNmodel, we use the U-Net model shown in Figure 1[1]. U-
net is amodel that extracts local features of the entire image by per-
forming convolution processing and pooling processing(Encode
Process), and restores the overall location information by using
convolution processing and amplification processing(Decode Pro-
cess). In this study, we focus on the lung nodule detection by ap-
plying U-net model to chest CT images(Figure 2[2]).

In fact, the U-Net model has many parameters such as image
size of 3D data, number of 3D data samples, U-net layer depth, fil-
ter size, kernel size, batch size, and initial learning rate. Therefore,
we need to determine these parameters dynamically by parameter
search.

IMPLEMENTATION OF U-NET BY CHAINER
Chainer is a Python-based, standalone open source framework for
deep learning models and ChainerMN(one of Chainer’s additional
packages) enablesmachine learning usingmultiple GPUswith only
a few changes to machine learning code written on the Chainer
base. In this research, we used ChainerMN to perform data paral-
lel using multiple GPUs.

In this research, the convolution processing executed twice in
the Encode process (Left of Figure 1) is defined as one model (UN-
etEncodeModel), and the Encode process is realized defining the
model (EncodeModel) that performs pooling processing for mul-
tiple UNetEncodeModel separately.Similarly, for the Decode pro-
cess(Right of Figure 1), the U-Net model is implemented by defin-
ing the convolution process as one model (UNetDecodeModel) and
defining the upsampling process as another model(DecodeModel).

PRELIMINARY EVALUATION
For preliminary evaluation, we use Reedbush-H and -L system as
GPU cluster operated by Information Technology Center, the Uni-
versity of Tokyo. In this case, a Dice coefficientDSC(A,B) = 2 |A∩B |

|A |+ |B |
is used as the evaluation function and we applied the parameters

Figure 1: U-net model[1]
Figure 2: Chest CT
images[2]

Table 1: Specification of Reedbush-H (RB-H) and -L (RB-L)

RB-H RB-L
CPU Intel Xeon E5-2695v4 (Broadwell-EP)

2 socket (36 core) 2.4 GHz
Memory 256 GB
GPU NVIDIA Tesla P100 x2 NVIDIA Tesla P100 x4
Interconnect InfiniBand EDR 100 Gbps

that maximize validation Dice Score of 1 GPU to multiple GPUs.
When using 1 GPU, the same Dice Score of validation as the previ-
ous research using Keras[2] was obtained, and when using 2 GPU
to 64 GPU, the execution time was inversely proportional to the
number of GPUs. On the other hand, with 2 GPU to 8 GPU, the
same Dice Score of validation as with 1GPU, 16 to 32 GPU, about
95% of Score, and 64 GPU, about 85% of Score were obtained.

CONCLUSION AND FUTUREWORK
In this study, we applied the best parameters of 1 GPU to multiple
GPUs and evaluated their performance. As the future work, we
would like to study the Bayesian optimizationwhen usingmultiple
GPUs and improve the accuracy of lung nodules.
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