Implementing the Tascell Task-Parallel Language Tascell
Using Multithreaded MPI

Daiki Kojima Tasuku Hraishi Masahiro Yasugi
Graduate School of Informatics, Kyoto Hiroshi Nakashima Department of Artificial Intelligence,
University Academic Center for Computlng and Kyushu Institute Of TeChnOlOgy

Kyoto, Japan
d-kojima@sys.i.kyoto-u.ac.jp

The Tascell language is a task-parallel language that achieves high
performance and distributed memory environment support using
the backtracking-based load balancing approach [1]. At first, inter-
node communications in Tascell are implemented using TCP/IP.
In this implementation, Tascell server processes are employed in
addition to computing processes. Each computing process that
contains one or more worker threads is TCP/IP connected to a
Tascell server, which relays inter-node messages.

Muraoka et al. developed an MPI-based implementation of Tas-
cell [2] to support environments where TCP/IP is not available
for inter-node communications and solve bottlenecks at Tascell
servers. In this implementation, Tascell servers are not employed
and inter-node mesasges are transferred directly among computing
processes. Each computing process employs a messaging thread
and a send request queue. In order to send an inter-node message,
a worker thread asks the messaging thread to send the message
by adding it to the request queue. The messaging thread sends the
queued message using MPI_Isend. This thread also handles mes-
sages from outside the node. It checks the existence of an incoming
message using MPI_Iprobe and receives it using MPI_recv. This
implementation has an advantage that it only requires the two-
sided communication paradigm and the MPI_THREAD_FUNNELED
support level for MPI implementations. However, there is the prob-
lem that the messaging thread uses busy-waiting for incoming or
outgoing messages, which is unavoidable without requiring the
MPI_THREAD_MULTIPLE support level, in which multiple threads
can make MPI calls in parallel.

Recently, more supercomputers are providing MPI implementa-
tions with the MPI_THREAD_MULTIPLE support level, which moti-
vated us to develop a busy-waiting free implementation of Tascell
by requiring this support. In our implementation, a worker thread
itself sends outgoing messages using MPI_send. For incoming mes-
sages, we employ a incoming message queue and two support
threads, a receiving thread and a handling thread, in each process.
The receiving threads waits for and receives incoming messages
using MPI_recv and adds them to the message queue. The handling
thread takes a message from the queue and handles it. Note that we
cannot let the receiving thread also handle the received message be-
cause some messages requires sending other outgoing messages for
handling it. When it occurs, the the receiving thread cannot receive
any incoming message until the sending messages is completed,
which causes a deadlock?.

I The busy-waiting free implementation requiring the MPI_THREAD_MULTPLE support
level employed as a competitor in the performance evaluation in [2], whose implemen-
tation details are not presented, has this problem.

Media Studies, Kyoto University
Kyoto, Japan

lizuka, Fukuoka, Japan

BN "Bm
18) Pen(15) Comp (160000)
Application
NPT THREAD MULTIPLE 36 workers
MPL THREAD MULTIPLE 36 workers X 2 procs

o

Fib(52)

_ Execution time [s]
R —
3

—

MPI_THREAD_FUNNELED 36 workers
MPI_THREAD_FUNNELED 36 workers X 2 procs
MPT_THREAD_FUNNELED 36 workers X 4 procs NPT THREAD MULTIPLE 36 workers X 4 procs

W UPL THREAD FUNNELED 36 workers X 8 procs W PI THREAD MULTIPLE 36 workers X 8 procs

B |PI THREAD FUNNELED 36 workers X 10 procs NEEN WPI THREAD WULTIPLE 36 workers X 10 procs

Figure 1: The result of the performance measurements of
the MPI-based implementations of Tascell.

We evaluated our implementation using up to 10 nodes of the
Laurel 2 supercomputer of ACCMS, Kyoto University. Each node
has two 18-core Xeon Broadwell E5-2695 v4 processors. We used In-
tel C compiler 17.0.6.256 with the -03 option, and Intel MPI 2017.4.
One MPI process having 36 worker threads was created on each
node. The result of the performance measurements of the original
(MPI_THREAD_FUNNELED) and our (MPI_THREAD_MULTIPLE) imple-
mentations are showed in Fig. 1. Our implementation achieved
higher performance in almost all the benchmark programs. In par-
ticular, we achieved 40% speedup compared to the original imple-
mentation in the executions using 10 nodes for Pen.

Furthermore, we are developing another MPI-based implementa-
tion of Tascell, which uses the MPI_THREAD_MULTPLE support level
and one-sided communications. In our current implementation, a
worker packs an outgoing message into a buffer before sending
it. Such redundant copying operations may be omitted using one-
sided communications. Since a message often contains large data
such as a vector as an input of a task, it is expected that we can
improve the performance by this optimization.

ACKNOWLEDGMENTS

We thank Daisuke Muraoka, who developed the original MPI-based
implementation of Tascell and gave us lots of technical knowledge
about it. This work was supported in part by JSPS KAKENHI Grant
Numbers JP17K00099 and JP19H04087.

REFERENCES

[1] Tasuku Hiraishi, Masahiro Yasugi, Seiji Umatani, and Taiichi Yuasa. 2009.
Backtracking-based Load Balancing. In Proceedings of the 14th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP 2009). 55-64.

Daisuke Muraoka, Masahiro Yasugi, Tasuku Hiraishi, and Seiji Umatani. 2016.
Evaluation of an MPI-Based Implementation of the Tascell Task-Parallel Language
on Massively Parallel Systems. In 2016 45th International Conference on Parallel
Processing Workshops (ICPPW). 161-170.

[2

	Acknowledgments
	References

