
Towards Cross-stack Dynamic Resource A�inity Management
Balazs Gero�

RIKEN Center for Computational Science
JAPAN

bgero�@riken.jp

1 INTRODUCTION AND MOTIVATION
Recent years have brought an explosion in workload diversity de-
ployed in high performance computing (HPC) environments. As
opposed to the classical HPC simulations, which stay rather static
throughout their lifetimes, these emerging applications utilize var-
ious di�erent runtime systems (e.g., implicitly via libraries), rely
on auxiliary helper threads, and often dynamically adjusting their
resource requirements. Furthermore, di�erent application compo-
nents are increasingly composed into work�ow type of execution.

The primary issue is that most components assume full control
over compute resources, leading to oversubscription and unbal-
anced resource distribution across the participating runtime pieces.
There is a need for the software stack to provide standard facili-
ties so that dynamic runtime components can synchronize their
resource usage. This poster addresses this issue and lays out our
vision for a cross-layer resource a�nity management system. We
describe some of our motivating application use-cases and intro-
duce the design of the mapping coordinator.

2 EXAMPLE USE-CASES
We have collected a number of real-world application use-cases
and organized them along their common properties.

2.1 Dynamic Tasks Performed by a Single
Application

A number of applications spawn part of their runtime components
on demand depending on the given execution phase. One example
is Tensor�ow using Intel’s DNN library. While internal thread pools
of the Tensor�ow engine use native pthreads the DNN library is
parallelized using OpenMP. No standard interfaces allow control
and co-ordination among multiple thread groups of an application.

2.2 Utility Threads performed by Auxiliary
Libraries

Another important scenario is auxiliary or utility threads spawned
by runtime engines (e.g., the asynchronous communication threads
of the MPI library). Unless one ensures that utility threads are placed
to adequate compute resources, they may interfere with compute
threads of the application adversely impacting overall performance.
One example is the GeoFEM application from The University of
Tokyo which utilized asynchronous collective operations in MPI.

2.3 Rebalancing MPI and OpenMP workers
An Arbitrary Lagrangian-Eulerian (ALE) hydrodynamics simula-
tion from the French Alternative Energies and Atomic Energy Com-
mission (CEA) relies on multi-phase computation. While one phase
can be e�ciently parallelized using MPI, the other one is more
e�cient using all node resources for an OpenMP region in a single

User Nadine Batch 
Job

User Julie Comp0 

(e.g., mpirun)

0 41 2 3 85 6 7 129 10 11 13 14

Proc0

System
Services

Proc1

User Julie Comp1

(e.g.,
analytics)

No
de

n-
1

User Nadine 
Comp0

…
User Julie Batch Job

User Julie Comp0 

(e.g., mpirun)

0 41 2 3 85 6 7 129 10 11 13 14

Proc0

System
Services

Proc1

User Julie 
Comp1 (e.g., 

analytics)

Jobm

Jobm+1

…

Ba
tc

h 
jo

b 
qu

eu
e

N
od

e 0

Mapping Coordinator

Figure 1: Overview of the Mapping Coordinator and its rela-
tion to the typical HPC software track.

process address space. In order to achieve this node resources need
to be reserved and released between phases so that the application
can rearrange its CPU usage.

3 DESIGN
Non of the above mentioned use-cases can be easily deployed on the
currently available HPC software stack. In order to address these
issues we are designing a software component that keeps track and
orchestrates resource usage of various runtime components and
enables interaction among components to dynamically recon�gure
their allocation. We call this the Mapping Coordinator, shown in
Figure 1. The poster will provide further details of its functionality
as well as an overview of the proposed APIs.

4 RELATEDWORK
Various tools provide extended functionalities to the basic Linux
resource orchestration mechanisms utilized by parallel applica-
tions [1–4]. Our e�ort embraces most of these with the aim of a
more general solution.

REFERENCES
[1] François Broquedis, Jérôme Clet-Ortega, Stéphanie Moreaud, Nathalie Furmento,

Brice Goglin, Guillaume Mercier, Samuel Thibault, and Raymond Namyst. 2010.
Hwloc: a Generic Framework for Managing Hardware A�nities in HPC Appli-
cations. In Proceedings of the 18th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP2010). IEEE Computer Society
Press, Pisa, Italia.

[2] Balazs Gero�, Rolf Riesen, and Yutaka Ishikawa. 2018. Making the Case for
Portable MPI Process Pinning. https://eurompi2018.bsc.es/sites/default/�les/
uploaded/EuroMPI2018_paper_40.pdf Poster presented at the 25th European
MPI Users’ Group Meeting, EuroMPI 2018, Barcelona.

[3] Edgar A. León. 2017. mpibind: A Memory-Centric A�nity Algorithm for Hybrid
Applications. In International Symposium onMemory Systems (MEMSYS’17). ACM,
Washington, DC.

[4] J. Treibig, G. Hager, and G. Wellein. 2010. LIKWID: A lightweight performance-
oriented tool suite for x86 multicore environments. In Proceedings of PSTI2010,
the First International Workshop on Parallel Software Tools and Tool Infrastructures.
San Diego CA.

https://eurompi2018.bsc.es/sites/default/files/uploaded/EuroMPI2018_paper_40.pdf
https://eurompi2018.bsc.es/sites/default/files/uploaded/EuroMPI2018_paper_40.pdf

	1 Introduction and Motivation
	2 Example Use-Cases
	2.1 Dynamic Tasks Performed by a Single Application
	2.2 Utility Threads performed by Auxiliary Libraries
	2.3 Rebalancing MPI and OpenMP workers

	3 Design
	4 Related Work
	References

